期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Protein Based Localized Surface Plasmon Resonance Gas Sensing
1
作者 Meisam Omidi Gh.Amoabediny +1 位作者 F.Yazdian M.Habibi-Rezaei 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期166-169,共4页
We apply the localized surface plasrnon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrorne c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range o... We apply the localized surface plasrnon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrorne c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range of 15 lOOppb. Monolayer formation of GNPs on glass surface functionalized with 3-aminopropyltrirnethoxysilane (APTMS) is performed for fabricating a chip-based format of the optical transducer. By chemical introduction of short-chain thiol derivatives on cyt c protein shell via its lysine residues, a very fast self-assembled rnonolayer (SAM) of cyt c is formed on the GNPs. Significant shifts in the LSPR peak (△λLSPR) are observed by reacting H2S with cyt c. Results show a linear relationship between △λLSPR and H2S concentration. Furthermore, shifts in the LSPR peak are reversible and the peak positions return to their pre-exposure values once the H2S is removed. The experirnental results strongly indicate that the protein based LSPR chip can be successfully used as a simple, fast, sensitive and quantitative sensor for H2S detection. 展开更多
关键词 Protein Based localized Surface Plasmon Resonance Gas Sensing
下载PDF
Resource Allocation for Uplink CSI Sensing Report in Multi-User WLAN Sensing
2
作者 Yifei Li Jilei Yan +2 位作者 Yan Long Xuming Fang Rong He 《Journal of Beijing Institute of Technology》 EI CAS 2022年第5期524-534,共11页
Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with th... Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with the access point and transmit channel state information(CSI)report simultaneously on the basis of uplink-orthogonal frequency division multiple access(OFDMA). Considering the transmission resource consumed in CSI report and the padding wastage in OFDMA based CSI report, we optimize the CSI simplification and uplink resource unit(RU)allocation jointly, aiming to balance the sensing accuracy and padding wastage performances in WLAN sensing. We propose the minimize padding maximize efficiency(MPME) algorithm to solve the problem and evaluate the performance of the proposed algorithm through extensive simulations. 展开更多
关键词 wireless local area network(WLAN)sensing channel state information(CSI)simplification padding wastage resource allocation
下载PDF
An Indoor Environment Sensing and Localization System via mmWave Phased Array 被引量:2
3
作者 Yifei Sun Jie Li +4 位作者 Tong Zhang Rui Wang Xiaohui Peng Xiao Han Haisheng Tan 《Journal of Communications and Information Networks》 EI CSCD 2022年第4期383-393,共11页
In this paper,an indoor layout sensing and localization system with testbed in the 60-GHz millimeter wave(mmWave)band,named mmReality,is elaborated.The mmReality system consists of one transmitter and one mobile recei... In this paper,an indoor layout sensing and localization system with testbed in the 60-GHz millimeter wave(mmWave)band,named mmReality,is elaborated.The mmReality system consists of one transmitter and one mobile receiver,both with a phased array and a single radio frequency(RF)chain.To reconstruct the room layout,the pilot signal is delivered from the transmitter to the receiver via different pairs of transmission and receiving beams,so that multipath signals in all directions can be captured.Then spatial smoothing and the two-dimensional multiple signal classification(MUSIC)algorithm are applied to detect the angle-of-departures(AoDs)and angle-of-arrivals(AoAs)of propagation paths.Moreover,the technique of multi-carrier ranging is adopted to measure the path lengths.Therefore,with the measurements of the receiver in different locations of the room,the receiver and virtual transmitters can be pinpointed to reconstruct the room layout.Experiments show that the reconstructed room layout can be utilized to localize a mobile device via the AoA spectrum. 展开更多
关键词 millimeter wave indoor sensing and localization MUSIC algorithm multi-input multi output(MIMO) room layout integrated sensing and communication(ISAC) environment sensing orthogonal frequency division multiplexing(OFDM)
原文传递
Gold nanorods conjugated upconversion nanoparticles nanocomposites for simultaneous bioimaging,local temperature sensing and photothermal therapy of OML-1 oral cancer cells
4
作者 Duc Tu Vu Thanh Thu Vu-Le +10 位作者 Van Nghia Nguyen Quoc Minh Le Churng-Ren Chris Wang Lai-Kwan Chau Tzyy-Schiuan Yang Michael WYChan Cheng-I Lee Chu-Chi Ting Jiunn-Yuan Lin Hung-Chih Kan Chia Chen Hsu 《International Journal of Smart and Nano Materials》 SCIE EI 2021年第1期49-71,共23页
The major challenge in photothermal therapy(PTT)is to develop nanocomposites that simultaneously exhibit bioimaging and PTT under a single near-infrared(NIR)irradiation with high therapeutic efficiency.Herein,we prese... The major challenge in photothermal therapy(PTT)is to develop nanocomposites that simultaneously exhibit bioimaging and PTT under a single near-infrared(NIR)irradiation with high therapeutic efficiency.Herein,we present a multifunctional nanocomposite synthesized by linking NaYF_(4):Yb^(3+),Er^(3+)upconversion nanoparticles(UCNPs)with gold nanorods(AuNR)to exhibit fluorescence label-ing,local temperature sensing and photothermal functions simul-taneously with a single NIR laser excitation.The AuNR-NaYF_(4):Yb^(3+),Er^(3+)nanocomposite particles displayed better photothermal prop-erties compared with pure AuNRs or a blend of AuNRs and NaYF_(4):Yb^(3+),Er^(3+)UCNPs.The temperature-dependent upconversion lumi-nescence(UCL)property was used to determine local temperature at the nanocomposite particles,which is useful for selecting appro-priate irradiation dosage for PTT.The therapeutic performance of the nanocomposites in PTT for OML-1 oral cancer cells was deter-mined.For cell labeling,we successfully labeled streptavidin-linked nanocomposite particles on the surface of OML-1 oral cancer using anti-human epidermal growth factor receptor 2(anti-Her2)anti-body.Finally,the nanocomposite particles caused exceptional destruction of cancer cells up to 70%dead cells under 976 nm laser irradiation for only one min at 0.3 W/cm^(2)which is below the maximal permissible exposure of human skin. 展开更多
关键词 Upconversion luminescence gold nanorod local temperature sensing BIOIMAGING photothermal therapy
原文传递
Multimodal fiber antenna for proximity and stress sensing
5
作者 Merve Gokce Eilam Smolinsky +3 位作者 Louis Alexandre van der Elst Jillian Noblet Creasy Clauser Huntsman Alexander Gumennik 《Advanced Photonics Nexus》 2024年第5期110-119,共10页
Fiber sensors are commonly used to detect environmental,physiological,optical,chemical,and biological factors.Thermally drawn fibers offer numerous advantages over other commercial products,including enhanced sensitiv... Fiber sensors are commonly used to detect environmental,physiological,optical,chemical,and biological factors.Thermally drawn fibers offer numerous advantages over other commercial products,including enhanced sensitivity,accuracy,improved functionality,and ease of manufacturing.Multimaterial,multifunctional fibers encapsulate essential internal structures within a microscale fiber,unlike macroscale sensors requiring separate electronic components.The compact size of fiber sensors enables seamless integration into existing systems,providing the desired functionality.We present a multimodal fiber antenna monitoring,in real time,both the local deformation of the fiber and environmental changes caused by foreign objects in proximity to the fiber.Time domain reflectometry propagates an electromagnetic wave through the fiber,allowing precise determination of spatial changes along the fiber with exceptional resolution and sensitivity.Local changes in impedance reflect fiber deformation,whereas proximity is detected through alterations in the evanescent field surrounding the fiber.The fiber antenna operates as a waveguide to detect local deformation through the antisymmetric mode and environmental changes through the symmetric mode.This multifunctionality broadens its application areas from biomedical engineering to cyber-physical interfacing.In antisymmetric mode,the device can sense local changes in pressure,and,potentially,temperature,pH,and other physiological conditions.In symmetric mode,it can be used in touch screens,environmental detection for security,cyber-physical interfacing,and human-robot interactions. 展开更多
关键词 fiber antenna waveguide symmetric and antisymmetric modes environmental proximity sensing local physiological sensing real-time monitoring
下载PDF
Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants 被引量:44
6
作者 Zhaoliang Zhang Hong Liao William J.Lucas 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第3期192-220,共29页
As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition... As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen- sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. 展开更多
关键词 ADAPTATION crop engineering strategies hormone networks local and long-distance sensing PHOSPHATE P use efficiency stress responses systemic signaling transcriptional regulation transport systems
原文传递
Sensorless Sensing with WiFi 被引量:11
7
作者 Zimu Zhou Chenshu Wu +1 位作者 Zheng Yang Yunhao Liu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期1-6,共6页
Can WiFi signals be used for sensing purpose? The growing PHY layer capabilities of WiFi has made it possible to reuse WiFi signals for both communication and sensing. Sensing via WiFi would enable remote sensing wit... Can WiFi signals be used for sensing purpose? The growing PHY layer capabilities of WiFi has made it possible to reuse WiFi signals for both communication and sensing. Sensing via WiFi would enable remote sensing without wearable sensors, simultaneous perception and data transmission without extra communication infrastructure, and contactless sensing in privacy-preserving mode. Due to the popularity of WiFi devices and the ubiquitous deployment of WiFi networks, WiFi-based sensing networks, if fully connected, would potentially rank as one of the world's largest wireless sensor networks. Yet the concept of wireless and sensorless sensing is not the simple combination of WiFi and radar. It seeks breakthroughs from dedicated radar systems, and aims to balance between low cost and high accuracy, to meet the rising demand for pervasive environment perception in everyday life. Despite increasing research interest, wireless sensing is still in its infancy. Through introductions on basic principles and working prototypes, we review the feasibilities and limitations of wireless, sensorless, and contactless sensing via WiFi. We envision this article as a brief primer on wireless sensing for interested readers to explore this open and largely unexplored field and create next-generation wireless and mobile computing applications. 展开更多
关键词 Channel State Information(CSI) sensorless sensing WiFi indoor localization device-free human detection activity recognition wireless networks ubiquitous computing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部