Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were ana...Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were analyzed. The results show that the CO2 emissions of steam locomotives decreased while that of diesel locomotives increased with time, due to the continuous shift from steam to diesel and electric locomotives. The total CO2 emissions of steam and diesel locomo- tives in China decreased from 42.23 Mt in 1975 to 16.40 Mt in 2005. The emission intensity of CO2 from the two kinds of locomotives decreased at an average rate of 2.4 g (converted t kin)-1 per year. The percentage of the CO2 emissions of locomotives to the total CO2 emissions in the sector of transportation, storage and post in China also decreased persistently from 1980 to 2005.展开更多
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires senso...Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.展开更多
At cruising speed,one of the most significant contributing factors to train fuel consumption is aerodynamic drag,and the leading locomotive experiences much more drag than any other car in the train.This work reports ...At cruising speed,one of the most significant contributing factors to train fuel consumption is aerodynamic drag,and the leading locomotive experiences much more drag than any other car in the train.This work reports on the drag reduction that can be realized by the use of add-on nose fairings that are deployed on leading locomotives in a train set.Two types of fairing shapes were considered and all fairing walls are flat.It is anticipated that the fairing shapes would result from the deployment of easily stowed panels in an origami inspired manner.One of the fairing shapes has the appearance of a wedge and the other fairing is also wedge shaped,but with flow directing side wall features.For each general fairing shape,the important dimensions were parametrically varied in a systematic manner to identify the dimensions that yield maximum drag reduction.For the first shape,45 different scenarios were considered;for the second shape,15 were considered.A steady commercial computational fluid dynamic solver was employed to solve the flow field and locomotive drag for each of the scenarios.The best performing wedge-shaped fairing reduced the leading locomotive drag by nominally 14%and the best performing fairing shape with the side walls reduced the drag by 17%.展开更多
To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of...To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnec...Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.展开更多
To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent ...To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent waves in the process of locomotion and doing an approximation of the serpenoid curve, the motion function of relative angles between two adjacent links and the absolute angles between each link and the baseline on the traveling curve are built. Two efficiency criterions of the gait are given as the energy loss function f and the unit displacement in one cycle dunit.Three parameters of the criterions affecting the efficiency of the gait ( the number of links that form the traveling wave n, the included angle between two adjacent links α, and the phase difference of adjacent included angles β) are discussed by simulations and experiments. The results show that f is insensitive to n; raising n increases dunit significantly; the maximum wave amplitude of α is a decreasing function of n; and increasing α reduces the displacement influence off when n is determined. The gait model is suitable for different inchworm locomotions of a snakelike robot whose traveling waves are formed by different numbers of identical links. A wave formed by more links or a greater relative angle between two adjacent links both lead to greater velocity of the movement.展开更多
At present,Sri Lanka is home to about 5,000-6,000 wild elephants roaming over close to 70%of the country’s land.Despite this blessing,around 150 elephants die each year due to many reasons.The main reasons for the al...At present,Sri Lanka is home to about 5,000-6,000 wild elephants roaming over close to 70%of the country’s land.Despite this blessing,around 150 elephants die each year due to many reasons.The main reasons for the altercations between humans and elephants are the drastic increase in the human population,human encroachment upon elephant territory for agriculture and settlements and unplanned development and transportation efforts.Elephants are long lived herbivores,and their survival depends upon regular migration over large distances to search for food,water,and social and reproductive partners.According to the Sri Lanka railways the average number of elephants that get killed due to elephant-railway accidents is about 9 per year.As a solution for this problem,we have proposed a novel system to pass a signal to indicate the train arrival.The proposed system detects the vibration of the locomotives and after detecting the vibration,alarm system will generate a high frequency signal within the frequency range,where the elephants are sensitive.The proposed system is a low cost device and this can be placed anywhere at any time.Moreover,this project aims to protect elephants from being harmed which usually happen due to various human activities.展开更多
In the present experiment, Pavlovian fear conditioning was adopted to study the effects of different early rearing environments on fear conditioning in adult rats. Weaned rats were reared in three manipulable environm...In the present experiment, Pavlovian fear conditioning was adopted to study the effects of different early rearing environments on fear conditioning in adult rats. Weaned rats were reared in three manipulable environments (enriched, social and isolated conditions). After 8 weeks, fear conditioning (characterized by percentage of freezing) was observed and analyzed, and rats' weight, locomoter activity and foot-shock sensitivity were operated too. The results showed that: (1) Compared with control group, the level of conditioned fear was significantly increased in enriched group, but significantly decreased in isolated group; (2) Enriched and isolated conditions influenced rat's weight significantly; (3) Different rearing conditions have no effect on locomoter activity and foot-shock sensitivity. These results indicated that early enriched condition could improve the tone-evoked fear conditioning response, while isolated condition impaired the response.展开更多
Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducte...Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...展开更多
Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kin...Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.展开更多
Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen(HBO)on repair of rat SCI.Methods:Seventy five male rats were divided randomly into five groups:sham,vehicle.BMSCs transplantation gro...Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen(HBO)on repair of rat SCI.Methods:Seventy five male rats were divided randomly into five groups:sham,vehicle.BMSCs transplantation group,combination group,15 rats in each group.Every week after the SCI onset,all animals were evaluated for behavior outcome by Basso-BeattleBresnahan(BBB) score and inclined plane test.Axon recovery was examined with focal spinal cord tissue by electron microscope at 6 weeks after the SCI onset.HE staining and BrdU staining were performed to examine the BMSCs and lesion post injury.Somatosensory evoked potential(SEP) testing was performed to detect the recovery of neural conduction.Results from the behavior tests from combination group were significant higher than rats which received only transplantation or HBO treatment.Results from histopathology showed favorable recovery from combination group than other treatment groups.The number of BrdU+ in combination group were measureable more than transplantation group(P<0.05).The greatest decrease in TNF-α,IL-1β,IL-6.IFN-α determined by Elisa assay in combination group were evident too.Conclusions:BMSCs transplantation can promote the functional recovery of rat hind limbs after SCI,and its combination with HBO has a synergistic effect.展开更多
There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m...There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.展开更多
A miniature wheel-track-legged mobile robot to carry out military and civilian missions in both indoor and outdoor environments is presented. Firstly, the mechanical design is discussed, which consists of four wheeled...A miniature wheel-track-legged mobile robot to carry out military and civilian missions in both indoor and outdoor environments is presented. Firstly, the mechanical design is discussed, which consists of four wheeled and four independently controlled tracked arms, embedded control system and teleoperation. Then the locomotion modes of the mobile robot and motion analysis are analyzed. The mobile robot can move using wheeled, tracked and legged modes, and it has the characteristics of posture-recovering, high mobility, small size and light weight. Finally, the effectiveness of the deve-loped mobile robot is confirmed by experiments such as posture recovering when tipped over, climb-ing stairs and traversing the high step.展开更多
Since its introduction into clinical practice 15 years ago,capsule endoscopy(CE)has become the first-line investigation procedure in some small bowel pathologies,and more recently,dedicated esophageal and colon CE hav...Since its introduction into clinical practice 15 years ago,capsule endoscopy(CE)has become the first-line investigation procedure in some small bowel pathologies,and more recently,dedicated esophageal and colon CE have expanded the fields of application to include the upper and lower gastrointestinal disorders.During this time,CE has become increasingly popular among gastroenterologists,with more than 2 million capsule examinations performed worldwide,and nearly 3000Pub Med-listed studies on its different aspects published.This huge interest in CE may be explained by its noninvasive nature,patient comfort,safety,and access to anatomical regions unattainable via conventional endoscopy.However,CE has several limitations which impede its wider clinical applications,including the lack of therapeutic capabilities,inability to obtain biopsies and control its locomotion.Several research groups are currently working to overcome these limitations,while novel devices able to control capsule movement,obtain high quality images,insufflate the gut lumen,perform chromoendoscopy,biopsy of suspect lesions,or even deliver targeted drugs directly to specific sites are under development.Overlooking current limitations,especially as some of them have already been successfully surmounted,and based on the tremendous progress in technology,it is expected that,by the end of next 15years,CE able to perform both diagnostic and therapeutic procedures will remain the major form of digestive endoscopy.This review summarizes the literature that prognosticates about the future developments of CE.展开更多
The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still nee...The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.展开更多
While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be contro...While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be controlled by a separate clock system. In the laboratory, this system drives clear activity rhythms throughout much of the year, not just during the mating season when horseshoe crabs express clear tidal rhythms in the field. Water temperature is a key factor influencing the expression of these rhythms: at 17~C tidal rhythms are expressed by most animals, while at I l^C expression of circatidal rhythms is rarely seen, and at 4~C rhythms are suppressed. Neither long (16:8 Light:Dark) nor short (8:16) photoperiods modify this behavior at any of these temperatures. Synchronization of these circatidal rhythms can be most readily effeeted by water pressure cycles both in situ and in the lab, while temperature and current cycles play lesser, but possibly contributory, roles. Interestingly, Light:Dark cycles appear to have synchronizing as well as "masking" effects in some individuals. Evidence that each of two daily bouts of activity are independent suggests that the Limulus circatidal rhythm of locomotion is driven by two (circalunidian) clocks, each with a period of 24.8h. While the anatomical locations of either the circadian clock, that drives fluctuations in visual sensitivity, or the circatidal clock, that controls tidal rhythms of locomotion, are currently unknown, preliminary molecular analyses have shown that a 71 kD protein that reacts with antibodies directed against the Drosophila PERIOD (PER) protein is found in both the pro- tocerebrum and the subesophageal ganglion展开更多
Over the past 20 years, experimental analyses of the biomechanics of locomotion in fishes have generated a number of key findings that are relevant to the construction of biomimetic fish robots. In this paper, we pres...Over the past 20 years, experimental analyses of the biomechanics of locomotion in fishes have generated a number of key findings that are relevant to the construction of biomimetic fish robots. In this paper, we present 16 results from recent experimental research on the mechanics, kinematics, fluid dynamics, and control of fish locomotion that summarize recent work on fish biomechanics. The findings and principles that have emerged from biomechanical studies of fish locomotion provide important insights into the functional design of fishes and suggest specific design features relevant to construction of robotic fish-inspired vehicles that underlie the high locomotor performance exhibited by fishes.展开更多
Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal ...Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal cord injury is limited due to the lack of long-distance axonal regeneration of severed fibers in the adult central nervous system. Most spinal cord injuries in humans, however, are anatomically incomplete. Although restorative treatment options for spinal cord injury remain currently limited, research from experimental models of spinal cord injury have revealed a tremendous capability for both spontaneous and treatment-induced plasticity of the corticospinal system that supports functional recovery. We review recent advances in the understanding of corticospinal circuit plasticity after spinal cord injury and concentrate mainly on the hindlimb motor cortex, its corticospinal projections, and the role of spinal mechanisms that support locomotor recovery. First, we discuss plasticity that occurs at the level of motor cortex and the reorganization of cortical movement representations. Next, we explore downstream plasticity in corticospinal projections. We then review the role of spinal mechanisms in locomotor recovery. We conclude with a perspective on harnessing neuroplasticity with therapeutic interventions to promote functional recovery.展开更多
文摘Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were analyzed. The results show that the CO2 emissions of steam locomotives decreased while that of diesel locomotives increased with time, due to the continuous shift from steam to diesel and electric locomotives. The total CO2 emissions of steam and diesel locomo- tives in China decreased from 42.23 Mt in 1975 to 16.40 Mt in 2005. The emission intensity of CO2 from the two kinds of locomotives decreased at an average rate of 2.4 g (converted t kin)-1 per year. The percentage of the CO2 emissions of locomotives to the total CO2 emissions in the sector of transportation, storage and post in China also decreased persistently from 1980 to 2005.
文摘Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.
文摘At cruising speed,one of the most significant contributing factors to train fuel consumption is aerodynamic drag,and the leading locomotive experiences much more drag than any other car in the train.This work reports on the drag reduction that can be realized by the use of add-on nose fairings that are deployed on leading locomotives in a train set.Two types of fairing shapes were considered and all fairing walls are flat.It is anticipated that the fairing shapes would result from the deployment of easily stowed panels in an origami inspired manner.One of the fairing shapes has the appearance of a wedge and the other fairing is also wedge shaped,but with flow directing side wall features.For each general fairing shape,the important dimensions were parametrically varied in a systematic manner to identify the dimensions that yield maximum drag reduction.For the first shape,45 different scenarios were considered;for the second shape,15 were considered.A steady commercial computational fluid dynamic solver was employed to solve the flow field and locomotive drag for each of the scenarios.The best performing wedge-shaped fairing reduced the leading locomotive drag by nominally 14%and the best performing fairing shape with the side walls reduced the drag by 17%.
基金Supported by National Natural Science Foundation of China (Grant Nos. 52375003, 52205006)National Key R&D Program of China (Grant No. 2019YFB1309600)。
文摘To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.
文摘To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent waves in the process of locomotion and doing an approximation of the serpenoid curve, the motion function of relative angles between two adjacent links and the absolute angles between each link and the baseline on the traveling curve are built. Two efficiency criterions of the gait are given as the energy loss function f and the unit displacement in one cycle dunit.Three parameters of the criterions affecting the efficiency of the gait ( the number of links that form the traveling wave n, the included angle between two adjacent links α, and the phase difference of adjacent included angles β) are discussed by simulations and experiments. The results show that f is insensitive to n; raising n increases dunit significantly; the maximum wave amplitude of α is a decreasing function of n; and increasing α reduces the displacement influence off when n is determined. The gait model is suitable for different inchworm locomotions of a snakelike robot whose traveling waves are formed by different numbers of identical links. A wave formed by more links or a greater relative angle between two adjacent links both lead to greater velocity of the movement.
文摘At present,Sri Lanka is home to about 5,000-6,000 wild elephants roaming over close to 70%of the country’s land.Despite this blessing,around 150 elephants die each year due to many reasons.The main reasons for the altercations between humans and elephants are the drastic increase in the human population,human encroachment upon elephant territory for agriculture and settlements and unplanned development and transportation efforts.Elephants are long lived herbivores,and their survival depends upon regular migration over large distances to search for food,water,and social and reproductive partners.According to the Sri Lanka railways the average number of elephants that get killed due to elephant-railway accidents is about 9 per year.As a solution for this problem,we have proposed a novel system to pass a signal to indicate the train arrival.The proposed system detects the vibration of the locomotives and after detecting the vibration,alarm system will generate a high frequency signal within the frequency range,where the elephants are sensitive.The proposed system is a low cost device and this can be placed anywhere at any time.Moreover,this project aims to protect elephants from being harmed which usually happen due to various human activities.
基金National Natural Science Foundation of China(30770689)Scientific Research Fund of Hunan Provincial Education Department (05B045)National Basic Research Program of China (2002CB410803-04)
文摘In the present experiment, Pavlovian fear conditioning was adopted to study the effects of different early rearing environments on fear conditioning in adult rats. Weaned rats were reared in three manipulable environments (enriched, social and isolated conditions). After 8 weeks, fear conditioning (characterized by percentage of freezing) was observed and analyzed, and rats' weight, locomoter activity and foot-shock sensitivity were operated too. The results showed that: (1) Compared with control group, the level of conditioned fear was significantly increased in enriched group, but significantly decreased in isolated group; (2) Enriched and isolated conditions influenced rat's weight significantly; (3) Different rearing conditions have no effect on locomoter activity and foot-shock sensitivity. These results indicated that early enriched condition could improve the tone-evoked fear conditioning response, while isolated condition impaired the response.
基金the Southeast Uni-versity Foundation for Excellent Young Scholars (No.4023001013)the NIH,National Center for Foundation from Research Resource,USA
文摘Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...
基金Supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.CDJZR13110073)
文摘Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.
基金supported by a grant from Yun Nan province united foundation(2008CD006)Yun Nan province education department foundation(2011y184)
文摘Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen(HBO)on repair of rat SCI.Methods:Seventy five male rats were divided randomly into five groups:sham,vehicle.BMSCs transplantation group,combination group,15 rats in each group.Every week after the SCI onset,all animals were evaluated for behavior outcome by Basso-BeattleBresnahan(BBB) score and inclined plane test.Axon recovery was examined with focal spinal cord tissue by electron microscope at 6 weeks after the SCI onset.HE staining and BrdU staining were performed to examine the BMSCs and lesion post injury.Somatosensory evoked potential(SEP) testing was performed to detect the recovery of neural conduction.Results from the behavior tests from combination group were significant higher than rats which received only transplantation or HBO treatment.Results from histopathology showed favorable recovery from combination group than other treatment groups.The number of BrdU+ in combination group were measureable more than transplantation group(P<0.05).The greatest decrease in TNF-α,IL-1β,IL-6.IFN-α determined by Elisa assay in combination group were evident too.Conclusions:BMSCs transplantation can promote the functional recovery of rat hind limbs after SCI,and its combination with HBO has a synergistic effect.
基金the National Natural Science Foundation of China (Grant No. 50579007)
文摘There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA420110)
文摘A miniature wheel-track-legged mobile robot to carry out military and civilian missions in both indoor and outdoor environments is presented. Firstly, the mechanical design is discussed, which consists of four wheeled and four independently controlled tracked arms, embedded control system and teleoperation. Then the locomotion modes of the mobile robot and motion analysis are analyzed. The mobile robot can move using wheeled, tracked and legged modes, and it has the characteristics of posture-recovering, high mobility, small size and light weight. Finally, the effectiveness of the deve-loped mobile robot is confirmed by experiments such as posture recovering when tipped over, climb-ing stairs and traversing the high step.
文摘Since its introduction into clinical practice 15 years ago,capsule endoscopy(CE)has become the first-line investigation procedure in some small bowel pathologies,and more recently,dedicated esophageal and colon CE have expanded the fields of application to include the upper and lower gastrointestinal disorders.During this time,CE has become increasingly popular among gastroenterologists,with more than 2 million capsule examinations performed worldwide,and nearly 3000Pub Med-listed studies on its different aspects published.This huge interest in CE may be explained by its noninvasive nature,patient comfort,safety,and access to anatomical regions unattainable via conventional endoscopy.However,CE has several limitations which impede its wider clinical applications,including the lack of therapeutic capabilities,inability to obtain biopsies and control its locomotion.Several research groups are currently working to overcome these limitations,while novel devices able to control capsule movement,obtain high quality images,insufflate the gut lumen,perform chromoendoscopy,biopsy of suspect lesions,or even deliver targeted drugs directly to specific sites are under development.Overlooking current limitations,especially as some of them have already been successfully surmounted,and based on the tremendous progress in technology,it is expected that,by the end of next 15years,CE able to perform both diagnostic and therapeutic procedures will remain the major form of digestive endoscopy.This review summarizes the literature that prognosticates about the future developments of CE.
基金Acknowledgement This work was supported by the National Natural Science Foundation (Grant No. 50635030).
文摘The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.
文摘While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be controlled by a separate clock system. In the laboratory, this system drives clear activity rhythms throughout much of the year, not just during the mating season when horseshoe crabs express clear tidal rhythms in the field. Water temperature is a key factor influencing the expression of these rhythms: at 17~C tidal rhythms are expressed by most animals, while at I l^C expression of circatidal rhythms is rarely seen, and at 4~C rhythms are suppressed. Neither long (16:8 Light:Dark) nor short (8:16) photoperiods modify this behavior at any of these temperatures. Synchronization of these circatidal rhythms can be most readily effeeted by water pressure cycles both in situ and in the lab, while temperature and current cycles play lesser, but possibly contributory, roles. Interestingly, Light:Dark cycles appear to have synchronizing as well as "masking" effects in some individuals. Evidence that each of two daily bouts of activity are independent suggests that the Limulus circatidal rhythm of locomotion is driven by two (circalunidian) clocks, each with a period of 24.8h. While the anatomical locations of either the circadian clock, that drives fluctuations in visual sensitivity, or the circatidal clock, that controls tidal rhythms of locomotion, are currently unknown, preliminary molecular analyses have shown that a 71 kD protein that reacts with antibodies directed against the Drosophila PERIOD (PER) protein is found in both the pro- tocerebrum and the subesophageal ganglion
基金This work was supported in part by an Office of Naval Research (USA) MURI grantgrants from the National Science Foundation to George Lauder
文摘Over the past 20 years, experimental analyses of the biomechanics of locomotion in fishes have generated a number of key findings that are relevant to the construction of biomimetic fish robots. In this paper, we present 16 results from recent experimental research on the mechanics, kinematics, fluid dynamics, and control of fish locomotion that summarize recent work on fish biomechanics. The findings and principles that have emerged from biomechanical studies of fish locomotion provide important insights into the functional design of fishes and suggest specific design features relevant to construction of robotic fish-inspired vehicles that underlie the high locomotor performance exhibited by fishes.
基金partially supported by the Canadian Institutes for Health Research(CIHR MOP-142288 to MM)+1 种基金supported by a salary award from Fonds de Recherche Québec Santé(FRQS)ARB was supported by a fellowship from FRQS
文摘Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal cord injury is limited due to the lack of long-distance axonal regeneration of severed fibers in the adult central nervous system. Most spinal cord injuries in humans, however, are anatomically incomplete. Although restorative treatment options for spinal cord injury remain currently limited, research from experimental models of spinal cord injury have revealed a tremendous capability for both spontaneous and treatment-induced plasticity of the corticospinal system that supports functional recovery. We review recent advances in the understanding of corticospinal circuit plasticity after spinal cord injury and concentrate mainly on the hindlimb motor cortex, its corticospinal projections, and the role of spinal mechanisms that support locomotor recovery. First, we discuss plasticity that occurs at the level of motor cortex and the reorganization of cortical movement representations. Next, we explore downstream plasticity in corticospinal projections. We then review the role of spinal mechanisms in locomotor recovery. We conclude with a perspective on harnessing neuroplasticity with therapeutic interventions to promote functional recovery.