Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient n...Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.展开更多
The paper consists in the use of some logical functions decomposition algorithms with application in the implementation of classical circuits like SSI, MSI and PLD. The decomposition methods use the Boolean matrix cal...The paper consists in the use of some logical functions decomposition algorithms with application in the implementation of classical circuits like SSI, MSI and PLD. The decomposition methods use the Boolean matrix calculation. It is calculated the implementation costs emphasizing the most economical solutions. One important aspect of serial decomposition is the task of selecting “best candidate” variables for the G function. Decomposition is essentially a process of substituting two or more input variables with a lesser number of new variables. This substitutes results in the reduction of the number of rows in the truth table. Hence, we look for variables which are most likely to reduce the number of rows in the truth table as a result of decomposition. Let us consider an input variable purposely avoiding all inter-relationships among the input variables. The only available parameter to evaluate its activity is the number of “l”s or “O”s that it has in the truth table. If the variable has only “1” s or “0” s, it is the “best candidate” for decomposition, as it is practically redundant.展开更多
This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bis...This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.展开更多
There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is call...There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.展开更多
A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)paramet...A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integ...This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integrating a novel AI algorithm,called Improved Laser Simulator Logic(ILSL)into the RFID system.The enhanced RFID system was able to improve the accuracy of item identification,reduce noise interference,and streamline the overall checkout process.The potential of the systemfor noise detection and elimination was initially investigated through a simulation study usingMATLAB and ILSL algorithm.Subsequently,it was deployed in a small-scale environment to validate its real-world performance.Results show that RFID with the proposed new algorithm ILSL and AI basket is capable of accurately detecting the related itemswhile eliminating noise originating fromunrelated objects,achieving an accuracy rate of 88%.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol...Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.展开更多
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logi...We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.展开更多
The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not ...The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.展开更多
This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into...This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into the frame-work of Ying’s fuzzifying topological spaces (by Lukasiewicz logic in [0, 1]). In this paper we introduce some sorts of operations, called general fuzzifying operations from P(X) to , where (X, τ) is a fuzzifying topological space. By making use of them we contract neighborhood structures, derived sets, closure operations and interior operations.展开更多
The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The con...The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities.Firstly, the thought of combat network model(CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength(CAST) logic and influence network(IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network(TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed.Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-Ⅱ(NSGA2) is used to solve the multiobjective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-Ⅲ(NSGA3)and strength Pareto evolutionary algorithm-Ⅱ(SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.展开更多
The classification of system based on faults is studied. Knowledge representation and reasoning technology are comprehensively discussed for logical divisible system, and then a method, named path information extremum...The classification of system based on faults is studied. Knowledge representation and reasoning technology are comprehensively discussed for logical divisible system, and then a method, named path information extremum diagnosis method(PIEDM), is proposed.PIEDM considers all nodes' information at one step, and so, has a high efficiency.展开更多
Coupling-induced logical stochastic resonance(LSR) can be observed in a noise-driven coupled bistable system where the behaviors of system can be interpreted consistently as a specific logic gate in an appropriate noi...Coupling-induced logical stochastic resonance(LSR) can be observed in a noise-driven coupled bistable system where the behaviors of system can be interpreted consistently as a specific logic gate in an appropriate noise level. Here constant coupling is extended to time-varying coupling, and then we investigate the effect of time-varying coupling on LSR in a periodically driven coupled bistable system. When coupling intensity oscillates periodically with the same frequency with periodic force or relatively high frequency, the system successfully yields the desired logic output. When coupling intensity oscillates irregularly with phase disturbance, large phase disturbance reduces the area of optimal parameter region of coupling intensity and response speed of logic devices. Although the system behaves as a desired logic gate when the frequency of time-periodic coupling intensity is precisely equal to that of periodic force, the desired logic gate is not robust against tiny frequency difference and phase disturbance. Therefore, periodic coupling intensity with high frequency ratio is an optimal option to obtain a reliable and robust logic operation.展开更多
A secure operating system in the communication network can provide the stable working environment,which ensures that the user information is not stolen.The micro-kernel operating system in the communication network re...A secure operating system in the communication network can provide the stable working environment,which ensures that the user information is not stolen.The micro-kernel operating system in the communication network retains the core functions in the kernel,and unnecessary tasks are implemented by calling external processes.Due to the small amount of code,the micro-kernel architecture has high reliability and scalability.Taking the microkernel operating system in the communication network prototype VSOS as an example,we employ the objdump tool to disassemble the system source code and get the assembly layer code.On this basis,we apply the Isabelle/HOL,a formal verification tool,to model the system prototype.By referring to the mathematical model of finite automata and taking the process scheduling module as an example,the security verification based on the assembly language layer is developed.Based on the Hoare logic theory,each assembly statement of the module is verified in turn.The verification results show that the scheduling module of VSOS has good functional security,and also show the feasibility of the refinement framework.展开更多
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste...Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.展开更多
Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain....Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree.展开更多
基金This work was supported by National Natural Science Foundation of China(No.60276037).
文摘Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.
文摘The paper consists in the use of some logical functions decomposition algorithms with application in the implementation of classical circuits like SSI, MSI and PLD. The decomposition methods use the Boolean matrix calculation. It is calculated the implementation costs emphasizing the most economical solutions. One important aspect of serial decomposition is the task of selecting “best candidate” variables for the G function. Decomposition is essentially a process of substituting two or more input variables with a lesser number of new variables. This substitutes results in the reduction of the number of rows in the truth table. Hence, we look for variables which are most likely to reduce the number of rows in the truth table as a result of decomposition. Let us consider an input variable purposely avoiding all inter-relationships among the input variables. The only available parameter to evaluate its activity is the number of “l”s or “O”s that it has in the truth table. If the variable has only “1” s or “0” s, it is the “best candidate” for decomposition, as it is practically redundant.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072262)the Shaanxi Computer Society&Xiangteng Company Foundation.
文摘This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.
基金supported by the Technology Innovation Team Program in Higher Education Institutions in Hubei Province, China (Grant No. T2020039)。
文摘There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.
基金This work was supported by the National Key R&D Program of China(Nos.2023YFA1606403 and 2023YFE0101600)the National Natural Science Foundation of China(Nos.12027809,11961141003,U1967201,11875073 and 11875074).
文摘A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
基金funding from Universiti Malaya and Ministry of High Education-Malaysia under Research Grant FRGS/1/2023/TK10/UM/02/3 and GPF 020A-2023supported by Researchers Supporting Project Number(RSPD2024 R803).
文摘This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integrating a novel AI algorithm,called Improved Laser Simulator Logic(ILSL)into the RFID system.The enhanced RFID system was able to improve the accuracy of item identification,reduce noise interference,and streamline the overall checkout process.The potential of the systemfor noise detection and elimination was initially investigated through a simulation study usingMATLAB and ILSL algorithm.Subsequently,it was deployed in a small-scale environment to validate its real-world performance.Results show that RFID with the proposed new algorithm ILSL and AI basket is capable of accurately detecting the related itemswhile eliminating noise originating fromunrelated objects,achieving an accuracy rate of 88%.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金the European Research Council(ERC)under the ERC Synergy grant agreement No.951424(Water-Futures)the European Union’s Horizon 2020 research and innovation programme under grant agreement No.739551(KIOS CoE)the Government of the Republic of Cyprus through the Directorate General for European Programmes,Coordination and Development。
文摘Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example.
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
文摘We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.
基金supported by the National Natural Science Foundation of China(Grant No.51379526)
文摘The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.
文摘This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into the frame-work of Ying’s fuzzifying topological spaces (by Lukasiewicz logic in [0, 1]). In this paper we introduce some sorts of operations, called general fuzzifying operations from P(X) to , where (X, τ) is a fuzzifying topological space. By making use of them we contract neighborhood structures, derived sets, closure operations and interior operations.
基金supported by the National Natural Science Foundation of China(72071206).
文摘The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities.Firstly, the thought of combat network model(CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength(CAST) logic and influence network(IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network(TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed.Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-Ⅱ(NSGA2) is used to solve the multiobjective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-Ⅲ(NSGA3)and strength Pareto evolutionary algorithm-Ⅱ(SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.
文摘The classification of system based on faults is studied. Knowledge representation and reasoning technology are comprehensively discussed for logical divisible system, and then a method, named path information extremum diagnosis method(PIEDM), is proposed.PIEDM considers all nodes' information at one step, and so, has a high efficiency.
基金supported by the National Natural Science Foundation of China (Grant No. 31601071)。
文摘Coupling-induced logical stochastic resonance(LSR) can be observed in a noise-driven coupled bistable system where the behaviors of system can be interpreted consistently as a specific logic gate in an appropriate noise level. Here constant coupling is extended to time-varying coupling, and then we investigate the effect of time-varying coupling on LSR in a periodically driven coupled bistable system. When coupling intensity oscillates periodically with the same frequency with periodic force or relatively high frequency, the system successfully yields the desired logic output. When coupling intensity oscillates irregularly with phase disturbance, large phase disturbance reduces the area of optimal parameter region of coupling intensity and response speed of logic devices. Although the system behaves as a desired logic gate when the frequency of time-periodic coupling intensity is precisely equal to that of periodic force, the desired logic gate is not robust against tiny frequency difference and phase disturbance. Therefore, periodic coupling intensity with high frequency ratio is an optimal option to obtain a reliable and robust logic operation.
基金This work was supported in part by the Natural Science Foundation of Jiangsu Province under grant No.BK20191475the fifth phase of“333 Project”scientific research funding project of Jiangsu Province in China under grant No.BRA2020306the Qing Lan Project of Jiangsu Province in China under grant No.2019.
文摘A secure operating system in the communication network can provide the stable working environment,which ensures that the user information is not stolen.The micro-kernel operating system in the communication network retains the core functions in the kernel,and unnecessary tasks are implemented by calling external processes.Due to the small amount of code,the micro-kernel architecture has high reliability and scalability.Taking the microkernel operating system in the communication network prototype VSOS as an example,we employ the objdump tool to disassemble the system source code and get the assembly layer code.On this basis,we apply the Isabelle/HOL,a formal verification tool,to model the system prototype.By referring to the mathematical model of finite automata and taking the process scheduling module as an example,the security verification based on the assembly language layer is developed.Based on the Hoare logic theory,each assembly statement of the module is verified in turn.The verification results show that the scheduling module of VSOS has good functional security,and also show the feasibility of the refinement framework.
基金supported by the National High Technology Research and Development Program of China under Grant No.2011AA05S113Major State Basic Research Development Program under Grant No.2012CB215106+1 种基金Science and Technology Plan Program in Zhejiang Province under Grant No.2009C34013National Science and Technology Supporting Plan Project under Grant No.2009BAG12A09
文摘Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.
文摘Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree.