人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占...人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。展开更多
The underground or open-pit methods are used for the extraction of mineral resources,each of which is divided into different categories.Coal is one of the mineral resources,which is exploited either by the surface or ...The underground or open-pit methods are used for the extraction of mineral resources,each of which is divided into different categories.Coal is one of the mineral resources,which is exploited either by the surface or the underground methods.The long-wall mining is one of the methods for the underground coal mining.In this method,which is a mechanized one,some machines such as the shearer or plow are used for the mining.The coal mine in Parvadeh,Tabas is a mechanized mine that is extracted by the long-wall mining.The modeling with particle flow code software was used in this mine for the evaluation of plow performance using the coal specifications.In this regard,the sample was first calibrated by sampling from the Parvadeh coal mine and performing the uniaxial and Brazilian tests on the model.Then,the modeling was done by constructing the model and using the variables such as the clearance angle and the linear velocity of the plow.After making 28 models for the plow,the best model of the plow was selected based on the maximum force applied to the machine in the X direction.Finally,the results of this study showed that the best plow performance is for a model with the clearance angle of zero and the linear velocity of 9 mm/min,and the maximum force applied to this model is equal to 39,000 kN in the X direction.展开更多
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
针对人脸检测中小尺度人脸和遮挡人脸的漏检问题,提出了一种基于改进YOLOv5s-face(you only look once version 5 small-face)的Face5系列人脸检测算法Face5S(face5 small)和Face5M(face5 medium)。使用马赛克(mosaic)和图像混合(mixup...针对人脸检测中小尺度人脸和遮挡人脸的漏检问题,提出了一种基于改进YOLOv5s-face(you only look once version 5 small-face)的Face5系列人脸检测算法Face5S(face5 small)和Face5M(face5 medium)。使用马赛克(mosaic)和图像混合(mixup)数据增强方法,提升算法在复杂场景下检测人脸的泛化性和稳定性;通过改进C3的网络结构和引入可变形卷积(DCNv2)降低算法的参数量,提高算法提取特征的灵活性;通过引入特征的内容感知重组上采样算子(CARAFE),提高多尺度人脸的检测性能;引入损失函数WIoUV3(wise intersection over union version 3),提升算法的小尺度人脸检测性能。实验结果表明,在WIDER FACE验证集上,相较于YOLOv5s-face算法,Face5S算法的平均mAP@0.5提升了1.03%;相较于先进的人脸检测算法ASFD-D3(automatic and scalable face detector-D3)和TinaFace,Face5M算法的平均mAP@0.5分别提升了1.07%和2.11%,提出的Face5系列算法能够有效提升算法对小尺度和部分遮挡人脸的检测性能,同时具有实时性。展开更多
Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systemat...Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design.展开更多
针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用...针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用GhostNet作为骨干网络,使用Adaptive-NMS(Non Max Suppression)非极大值抑制用于人脸框的回归,FaceNet识别采用MobileNetV1作为骨干网络,使用Triplet损失与交叉熵损失结合的联合损失函数用以人脸分类。优化后的算法在检测与识别上具有良好表现,改进RetinaFace算法在WiderFace数据集下检测精度为93.35%、90.84%和80.43%,FPS(Frames Per Second)可达53 frame·s^(-1)。动态人脸检测平均检测精度为96%,FPS为21 frame·s^(-1)。当FaceNet阈值设为1.15时,识别率最高达到98.23%。动态识别系统平均识别精度98%,FPS可达20 frame·s^(-1)。实验结果表明,该系统解决了人脸静态识别中需等待配合的问题,具有较高的识别精度与实时性。展开更多
Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the sim...Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.展开更多
Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in ...Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms.展开更多
In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between wor...In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between work and facial temperature within the flight simulator. The experiment involved a group of 10 participants who played the role of pilots in a simulated A-320 flight. Six different flying scenarios were designed to simulate normal and emergency situations on airplane takeoff that would occur in different levels of mental workload for the participants. The measurements were workload assessment, face temperatures, and heart rate monitoring. Throughout the experiments, we collected a total of 120 instances of takeoffs, together with over 10 hours of time-series data including heart rate, workload, and face thermal images and temperatures. Comparative analysis of EEG data and thermal image types, revealed intriguing findings. The results indicate a notable inverse relationship between workload and facial muscle temperatures, as well as facial landmark points. The results of this study contribute to a deeper understanding of the physiological effects of workload, as well as practical implications for aviation safety and performance.展开更多
How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a ...How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a continuous surface representation for face image with explicit function.First,an explicit model(EmFace)for human face representation is pro-posed in the form of a finite sum of mathematical terms,where each term is an analytic function element.Further,to estimate the unknown parameters of EmFace,a novel neural network,EmNet,is designed with an encoder-decoder structure and trained from massive face images,where the encoder is defined by a deep convolutional neural network and the decoder is an explicit mathematical expression of EmFace.The authors demonstrate that our EmFace represents face image more accurate than the comparison method,with an average mean square error of 0.000888,0.000936,0.000953 on LFW,IARPA Janus Benchmark-B,and IJB-C datasets.Visualisation results show that,EmFace has a higher representation performance on faces with various expressions,postures,and other factors.Furthermore,EmFace achieves reasonable performance on several face image processing tasks,including face image restoration,denoising,and transformation.展开更多
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran...The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.展开更多
Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beac...Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.展开更多
Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be...Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be beneficial in multiple medical fields,such as diagnosis and privacy protection.Previous studies on face animation often relied on a single source image to generate an output video.With a significant pose difference between the source image and the driving frame,the quality of the generated video is likely to be suboptimal because the source image may not provide sufficient features for the warped feature map.Methods In this study,we propose a novel face-animation scheme based on multiple sources and perspective alignment to address these issues.We first introduce a multiple-source sampling and selection module to screen the optimal source image set from the provided driving video.We then propose an inter-frame interpolation and alignment module to further eliminate the misalignment between the selected source image and the driving frame.Conclusions The proposed method exhibits superior performance in terms of objective metrics and visual quality in large-angle animation scenes compared to other state-of-the-art face animation methods.It indicates the effectiveness of the proposed method in addressing the distortion issues in large-angle animation.展开更多
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg...Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
文摘人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。
文摘The underground or open-pit methods are used for the extraction of mineral resources,each of which is divided into different categories.Coal is one of the mineral resources,which is exploited either by the surface or the underground methods.The long-wall mining is one of the methods for the underground coal mining.In this method,which is a mechanized one,some machines such as the shearer or plow are used for the mining.The coal mine in Parvadeh,Tabas is a mechanized mine that is extracted by the long-wall mining.The modeling with particle flow code software was used in this mine for the evaluation of plow performance using the coal specifications.In this regard,the sample was first calibrated by sampling from the Parvadeh coal mine and performing the uniaxial and Brazilian tests on the model.Then,the modeling was done by constructing the model and using the variables such as the clearance angle and the linear velocity of the plow.After making 28 models for the plow,the best model of the plow was selected based on the maximum force applied to the machine in the X direction.Finally,the results of this study showed that the best plow performance is for a model with the clearance angle of zero and the linear velocity of 9 mm/min,and the maximum force applied to this model is equal to 39,000 kN in the X direction.
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
文摘针对人脸检测中小尺度人脸和遮挡人脸的漏检问题,提出了一种基于改进YOLOv5s-face(you only look once version 5 small-face)的Face5系列人脸检测算法Face5S(face5 small)和Face5M(face5 medium)。使用马赛克(mosaic)和图像混合(mixup)数据增强方法,提升算法在复杂场景下检测人脸的泛化性和稳定性;通过改进C3的网络结构和引入可变形卷积(DCNv2)降低算法的参数量,提高算法提取特征的灵活性;通过引入特征的内容感知重组上采样算子(CARAFE),提高多尺度人脸的检测性能;引入损失函数WIoUV3(wise intersection over union version 3),提升算法的小尺度人脸检测性能。实验结果表明,在WIDER FACE验证集上,相较于YOLOv5s-face算法,Face5S算法的平均mAP@0.5提升了1.03%;相较于先进的人脸检测算法ASFD-D3(automatic and scalable face detector-D3)和TinaFace,Face5M算法的平均mAP@0.5分别提升了1.07%和2.11%,提出的Face5系列算法能够有效提升算法对小尺度和部分遮挡人脸的检测性能,同时具有实时性。
基金financially supported by the Fundamental Research Funds for the Central Universities,CHD(300102212706)the National Natural Science Foundation of China[Grant No.52108360]the Science and Technology Project of Department of Transportation of Yunnan Province(No.YJKJ[2019]59)。
文摘Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design.
文摘针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用GhostNet作为骨干网络,使用Adaptive-NMS(Non Max Suppression)非极大值抑制用于人脸框的回归,FaceNet识别采用MobileNetV1作为骨干网络,使用Triplet损失与交叉熵损失结合的联合损失函数用以人脸分类。优化后的算法在检测与识别上具有良好表现,改进RetinaFace算法在WiderFace数据集下检测精度为93.35%、90.84%和80.43%,FPS(Frames Per Second)可达53 frame·s^(-1)。动态人脸检测平均检测精度为96%,FPS为21 frame·s^(-1)。当FaceNet阈值设为1.15时,识别率最高达到98.23%。动态识别系统平均识别精度98%,FPS可达20 frame·s^(-1)。实验结果表明,该系统解决了人脸静态识别中需等待配合的问题,具有较高的识别精度与实时性。
文摘Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.
文摘Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms.
文摘In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between work and facial temperature within the flight simulator. The experiment involved a group of 10 participants who played the role of pilots in a simulated A-320 flight. Six different flying scenarios were designed to simulate normal and emergency situations on airplane takeoff that would occur in different levels of mental workload for the participants. The measurements were workload assessment, face temperatures, and heart rate monitoring. Throughout the experiments, we collected a total of 120 instances of takeoffs, together with over 10 hours of time-series data including heart rate, workload, and face thermal images and temperatures. Comparative analysis of EEG data and thermal image types, revealed intriguing findings. The results indicate a notable inverse relationship between workload and facial muscle temperatures, as well as facial landmark points. The results of this study contribute to a deeper understanding of the physiological effects of workload, as well as practical implications for aviation safety and performance.
基金National Natural Science Foundation of China,Grant/Award Number:92370117。
文摘How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a continuous surface representation for face image with explicit function.First,an explicit model(EmFace)for human face representation is pro-posed in the form of a finite sum of mathematical terms,where each term is an analytic function element.Further,to estimate the unknown parameters of EmFace,a novel neural network,EmNet,is designed with an encoder-decoder structure and trained from massive face images,where the encoder is defined by a deep convolutional neural network and the decoder is an explicit mathematical expression of EmFace.The authors demonstrate that our EmFace represents face image more accurate than the comparison method,with an average mean square error of 0.000888,0.000936,0.000953 on LFW,IARPA Janus Benchmark-B,and IJB-C datasets.Visualisation results show that,EmFace has a higher representation performance on faces with various expressions,postures,and other factors.Furthermore,EmFace achieves reasonable performance on several face image processing tasks,including face image restoration,denoising,and transformation.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20594)the Fundamental Research Funds for the Central Universities(Grant No.B230205028)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0694).
文摘The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.
文摘Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.
基金the Fund from Sichuan Provincial Key Laboratory of Intelligent Terminals(SCITLAB-20016).
文摘Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be beneficial in multiple medical fields,such as diagnosis and privacy protection.Previous studies on face animation often relied on a single source image to generate an output video.With a significant pose difference between the source image and the driving frame,the quality of the generated video is likely to be suboptimal because the source image may not provide sufficient features for the warped feature map.Methods In this study,we propose a novel face-animation scheme based on multiple sources and perspective alignment to address these issues.We first introduce a multiple-source sampling and selection module to screen the optimal source image set from the provided driving video.We then propose an inter-frame interpolation and alignment module to further eliminate the misalignment between the selected source image and the driving frame.Conclusions The proposed method exhibits superior performance in terms of objective metrics and visual quality in large-angle animation scenes compared to other state-of-the-art face animation methods.It indicates the effectiveness of the proposed method in addressing the distortion issues in large-angle animation.
文摘Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.