This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham...This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.展开更多
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the val...A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the validity of the theoretical method is verified by the finite element method.The formation mechanisms of the band gaps are illustrated by the analysis of the effective dynamic mass density and group velocity.The effect of the lever ratio on the band gaps is analyzed.The results indicate that as the lever ratio increases,the first band gap shifts to lower frequencies,while the bandwidth is widened.Moreover,the sound insulation performance of the proposed metamaterial plate is evaluated via examining the sound transmission loss(STL).Compared with the metamaterial plates without lever accessories,the proposed metamaterial plates with a suitable lever ratio have better sound insulation performance at low frequencies.展开更多
Honeycomb panel is consisted of 3 layers that are double-faced sheets and honeycomb-shaped core. It is highly desirable for ship, railway, and aerospace industry. The reason is that honeycomb panel excels in strength ...Honeycomb panel is consisted of 3 layers that are double-faced sheets and honeycomb-shaped core. It is highly desirable for ship, railway, and aerospace industry. The reason is that honeycomb panel excels in strength and in its weight. However in terms of insulation, it is a little bit insufficient to commonly use sandwich-panel. In this paper, Moor’s theory is used to predict sound transmission loss (STL). The theory is assumed that core layer is homogeneous orthotropic. And to calculate STL, it is evaluated in terms of the symmetric and anti-symmetric panel impedances, and the characteristic impedance of air. After that predicted data are compared with experiment data.展开更多
The sound insulation performance of railway car body structures is critical for the control of rail vehicle interior noise.In sound transmission loss(STL)measurements,a niche with a large depth is necessary to allow f...The sound insulation performance of railway car body structures is critical for the control of rail vehicle interior noise.In sound transmission loss(STL)measurements,a niche with a large depth is necessary to allow for mounting the wide range of thicknesses of railway car body panels and for the mechanical isolation of the two rooms.In this study,two typical interior floor panels are tested in a series of mounting conditions and mechanical boundary conditions.The change of STL results during measurement is also predicted by an STL prediction model based on the finite element method.At lower frequencies,the STL results are influenced by both the mounting positions and the mechanical boundary conditions.At higher frequencies,the STL results are mainly influenced by the mechanical boundary conditions.Differences between the panel in the infinite baffle and niches at the resonance and off-resonance frequencies are different.Considering both the effects of mounting positions and mechanical boundary conditions,the existence of the cavity amplifies the STL difference caused by the mechanical boundary conditions.展开更多
Recently,cylindrical structures have been exploited in various fields due to their excellent mechanical properties.With the increase in the application of cylindrical shell structures,researchers are paying more and m...Recently,cylindrical structures have been exploited in various fields due to their excellent mechanical properties.With the increase in the application of cylindrical shell structures,researchers are paying more and more attention to its acoustic performance and sound insulation applications.By inserting the pyramidal truss lattice into the cylindrical shell structure,a cylindrical sandwich structure is obtained and the sound insulation performance of the structure is investigated.The space-harmonic expansion method and the principle of virtual work are employed to establish a theoretical model for the acoustic analysis of cylindrical sandwich structures.The vibro-acoustic coupling is taken into account by imposing the velocity continuity condition at the fluid-solid interface.The sound transmission loss(STL)performance of the structure is examined by establishing both theoretical and finite element models.Subsequently,the influence of various parameters on sound transmission loss is researched and analyzed.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11972082)。
文摘This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金Project supported by the National Natural Science Foundation of China(No.11972050)。
文摘A novel metamaterial plate with subwavelength lever-type resonators is proposed to obtain low frequency broadband band gaps and good sound insulation performance.The band structure is theoretically derived,and the validity of the theoretical method is verified by the finite element method.The formation mechanisms of the band gaps are illustrated by the analysis of the effective dynamic mass density and group velocity.The effect of the lever ratio on the band gaps is analyzed.The results indicate that as the lever ratio increases,the first band gap shifts to lower frequencies,while the bandwidth is widened.Moreover,the sound insulation performance of the proposed metamaterial plate is evaluated via examining the sound transmission loss(STL).Compared with the metamaterial plates without lever accessories,the proposed metamaterial plates with a suitable lever ratio have better sound insulation performance at low frequencies.
文摘Honeycomb panel is consisted of 3 layers that are double-faced sheets and honeycomb-shaped core. It is highly desirable for ship, railway, and aerospace industry. The reason is that honeycomb panel excels in strength and in its weight. However in terms of insulation, it is a little bit insufficient to commonly use sandwich-panel. In this paper, Moor’s theory is used to predict sound transmission loss (STL). The theory is assumed that core layer is homogeneous orthotropic. And to calculate STL, it is evaluated in terms of the symmetric and anti-symmetric panel impedances, and the characteristic impedance of air. After that predicted data are compared with experiment data.
基金the National Key Research and Development Program of China(No.2016YFE0205200)the National Natural Science Foundation of China(No.U1834201)。
文摘The sound insulation performance of railway car body structures is critical for the control of rail vehicle interior noise.In sound transmission loss(STL)measurements,a niche with a large depth is necessary to allow for mounting the wide range of thicknesses of railway car body panels and for the mechanical isolation of the two rooms.In this study,two typical interior floor panels are tested in a series of mounting conditions and mechanical boundary conditions.The change of STL results during measurement is also predicted by an STL prediction model based on the finite element method.At lower frequencies,the STL results are influenced by both the mounting positions and the mechanical boundary conditions.At higher frequencies,the STL results are mainly influenced by the mechanical boundary conditions.Differences between the panel in the infinite baffle and niches at the resonance and off-resonance frequencies are different.Considering both the effects of mounting positions and mechanical boundary conditions,the existence of the cavity amplifies the STL difference caused by the mechanical boundary conditions.
基金The authors gratefully acknowledge the financial support from National Nature Science Foundation of China under Grant No.12072092.
文摘Recently,cylindrical structures have been exploited in various fields due to their excellent mechanical properties.With the increase in the application of cylindrical shell structures,researchers are paying more and more attention to its acoustic performance and sound insulation applications.By inserting the pyramidal truss lattice into the cylindrical shell structure,a cylindrical sandwich structure is obtained and the sound insulation performance of the structure is investigated.The space-harmonic expansion method and the principle of virtual work are employed to establish a theoretical model for the acoustic analysis of cylindrical sandwich structures.The vibro-acoustic coupling is taken into account by imposing the velocity continuity condition at the fluid-solid interface.The sound transmission loss(STL)performance of the structure is examined by establishing both theoretical and finite element models.Subsequently,the influence of various parameters on sound transmission loss is researched and analyzed.