期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Phenomenon and Mechanism of High Temperature Low Plasticity in High-Cr Nickel-based Superalloy 被引量:6
1
作者 Zhongnan Bi Jianxin Dong +1 位作者 Lei Zheng Xishan Xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第2期187-192,共6页
Cr is the most important element in nickel-based alloys to prevent high temperature oxidation and corrosion. However, high-Cr content will lead to a decline of hot workability which limits the addition of Cr for most ... Cr is the most important element in nickel-based alloys to prevent high temperature oxidation and corrosion. However, high-Cr content will lead to a decline of hot workability which limits the addition of Cr for most nickel-based superalloys. In order to add more Cr into Ni-based alloy for improving high temperature oxidation and corrosion resistance, the poor hot workability of high-Cr alloy must be first solved. Deformation characteristic of a high-Cr nickel-based alloy (40 wt% Cr) under hot compression conditions at 800-1200 ℃ has been investigated by using a Gleeble 3500 machine, and the microstructural evolution during hot working process has been observed by optical microscopy and scanning electron microscopy. The results show that a high-temperature low-plasticity (HTLP) region exists in this high-Cr nickel-based alloy. This phenomenon can be attributed to its non-uniform interdendritic microstructure at high temperatures. These results can explain the poor hot workability of high-Cr nickel-based alloy. 展开更多
关键词 High-Cr nickel-based superaUoy Hot workability Forging α-Cr phase High temperature low plasticity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部