Magnetically separable mesoporous activated carbon was prepared from brown coal in the presence of Fe3O4 as a bi-functional additive.Magnetic activated carbon(MAC)was characterized by lowtemperature nitrogen adsorptio...Magnetically separable mesoporous activated carbon was prepared from brown coal in the presence of Fe3O4 as a bi-functional additive.Magnetic activated carbon(MAC)was characterized by lowtemperature nitrogen adsorption,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and vibrating sample magnetometry(VSM).The evolution behaviors and transition mechanism of Fe3O4 during the preparation of MAC were investigated.The results show that prepared MAC with 6 wt%Fe3O4 addition having a specific surface area and mesopore ratio of 370 m^2·g^-1 and 55.7%,which meet the requirements of adsorption application and magnetic recovery.Highly dispersed iron-containing aggregates with the size of 0.1 lm in the MAC were observed.During the preparation of MAC,Fe3O4 could enhance the escape of volatiles during the carbonization.Fe3O4 could also accelerate burning off the carbon wall during activation,which leads to enlarging micropore size,then resulting in the generation of mesopore and macropore.As a result,a part of Fe3O4 converted into FeO,FeOOH,a-Fe,c-Fe,Fe2SiO4 and compound of Aluminum-iron-silicon.The prepared activated carbon,which was magnetized by both of residual Fe3O4,reduced a-Fe and c-Fe,can be easily separated from the original solution by external magnetic field.展开更多
Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture wh...Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.展开更多
Dense-medium cyclones have been used for beneficiation of fine particles of coal. In this study, the usability of cyclones in the beneficiation of tailings of a coal preparation plant was investigated. For this purpos...Dense-medium cyclones have been used for beneficiation of fine particles of coal. In this study, the usability of cyclones in the beneficiation of tailings of a coal preparation plant was investigated. For this purpose, separation tests were conducted using spiral concentrator and heavy medium cyclones with the specific weight of medium 1.3-1.8 (g/cm^3) on different grading fractions of tailing in an industrial scale (the weight of tail sample was five tons). Spiral concentrator was utilized to beneficiate particles smaller than 1 mm. In order to evaluate the efficiency of cyclones, sink and float experiments using a specific weight of 1.3, 1.5, 1.7 and 1.9 g/cm^3, were conducted on a pilot scale. Based on the obtained results, the recovery of floated materials in cyclones with the specific weight of 1.40, 1.47 and 1.55 g/cm^3 are 17.75%, 33.80%, and 50%, respectively. Also, the cut point (Pso), which is the relative density at which particles report equally to the both products are 1.40, 1.67 and 1.86 g/cm^3. The probable errors of separation for defined specific weights for cyclones are 0.080, 0.085 and 0.030, respectively. Also, the coefficients of variation was calculated to be 0.20, 0.12 and 0.03. Finally, it could be said that the performance of a cyclone with a heavy medium of 1.40 g/cm^3 specific weight is desirable compared with other specific weights.展开更多
This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of...This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.展开更多
In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.Th...In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.展开更多
The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers an...The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers and boilers with manual load-ing.The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions,as well as the mass of ash and slag waste.The main pollutants from coal combustion are calculated:particulate matter,benz(a)pyrene,nitrogen oxides,sulfur dioxide,carbon monoxide.Of the greenhouse gases carbon dioxide is calculated.As a result of conducted research it is shown that the simplest preliminary preparation(size-graded)of coal significantly improves combustion efficiency and environmental performance:emissions are reduced by 13%for hard coal and up to 20%for brown coal.The introduction of automated boil-ers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2-3 times.The best environmental indicators correspond to heat-treated lignite,which is characterized by the absence of sulfur dioxide emissions.展开更多
In this paper the method to calculate intangible quality cost is put forward for the first time based on the production and management characteristics of coal preparation plant. A model for assessment of quality manag...In this paper the method to calculate intangible quality cost is put forward for the first time based on the production and management characteristics of coal preparation plant. A model for assessment of quality management performance of coal preparation plant is established on the ground of quality cost. By using of CIMS integration environment the strategy to carry out the model and the application example are also offered. It provides a new and feasible way to assess performance quality management of coal preparation plant.展开更多
Traditional coal mining and utilisation patterns are severely detrimental to natural resources and environments and significantly impede safe, low-carbon, clean, and sustainable utilisation of coal resources. Based on...Traditional coal mining and utilisation patterns are severely detrimental to natural resources and environments and significantly impede safe, low-carbon, clean, and sustainable utilisation of coal resources. Based on the idea of in situ fluidized coal mining that aims to transform solid coal into liquid or gas and transports the fluidized resources to the ground to ensure safe mining and low-carbon and clean utilisation, in this study, we report on a novel in situ unmanned automatic mining method. This includes a flexible, earthworm-like unmanned automatic mining machine (UAMM) and a coal mine layout for in situ fluidized coal mining suitable for the UAMM. The technological and economic advantages and the carbon emission reduction of the UAMM-based in situ fluidized mining in contrast to traditional mining technologies are evaluated as well. The development trends and possible challenges to this design are also discussed. It is estimated that the proposed method costs approximately 49% of traditional coal mining costs. The UAMM-based in situ fluidized mining and transformation method will reduce CO2 emissions by at least 94.9% compared to traditional coal mining and utilisation methods. The proposed approach is expected to achieve safe and environmentally friendly coal mining as well as lowcarbon and clean utilisation of coal.展开更多
The feasibility of preparing flocculant from powdered coal ashes is studied in detail. By means of orthogonal tests, the influence of various factors, such as the activation temperature, the activation time, the ratio...The feasibility of preparing flocculant from powdered coal ashes is studied in detail. By means of orthogonal tests, the influence of various factors, such as the activation temperature, the activation time, the ratio of CaO to Al2O3, the hydrochloric acid concentration, the reaction time and the reaction temperature, on preparation is investigated, and the hest operating condition is determined.展开更多
The complex reaction system of the coal gasification coupling C1 reaction was analyzed based on the principles of thermodynamics. The results show that an increase in the temperature is beneficial to the generation of...The complex reaction system of the coal gasification coupling C1 reaction was analyzed based on the principles of thermodynamics. The results show that an increase in the temperature is beneficial to the generation of hydrocarbons with high carbon-atom contents, in which the alkane yield is higher than the alkene yield. The complex reaction system consisting of C, H20, CO, CO2, H2, C2H4, C3H6 and C4Hs was studied, and the obtained results indicated that when the maximum mole fraction content of C2-C4 olefins was regarded as the optimized objective function, the optimum temperature was approximately 648 K, the pressure was 0.1 MPa, the feed ratio was approximately 0.6, and the maximum mole fraction content of C2-C4 olefins was approximately 28.24%. The thermodynamic simulation and calculation of the complex reaction system can provide a basis for the determination and optimization of actual process conditions and are therefore of great theoretical and practical significance.展开更多
Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-e...Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge. Based on our long-term basic research and technology development, the progress in beneficiation, cleaning, and trans- formation of coal, which includes dense phase fluidized bed dry beneficiation, deep screening of wet fine coal, micro-bubble flotation column separation, molecular coal chemistry, and transformation and sepa- ration of coal and its derivatives into value-added chemicals under mild conditions, is discussed.展开更多
Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucki...Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucking technique of soft coal with low permeability. It is clearly pointed out that the gas can be highly effectively sucked only by compression fracture along the occurrence of the coal seam, creating inter-seams crack belt because of the difference of bulgy deformation. After the flooding experiment in the 24080 workface of Pingdingshan No. 10 mine, the average single-bore volume of gas increases from 77 m3 to 7 893 mS, while decay cycle extended from 7 days to 80-90 days. Also, the single-bore extracting rate of gas increases to 33%.展开更多
Tars from two Mongolian coals (Tavan Tolgoi and Baganuur) produced by simple distillation have been characterized using size exclusion chromatography (SEC) with elution in both 1-methyl-2-pyrrolidinone (NMP) and a mix...Tars from two Mongolian coals (Tavan Tolgoi and Baganuur) produced by simple distillation have been characterized using size exclusion chromatography (SEC) with elution in both 1-methyl-2-pyrrolidinone (NMP) and a mixed solvent (NMP and chloroform), UV-fluorescence in chloroform and NMP, gas chromatography (GC), mass spectrometry (GC-MS, probe-MS and LD-MS with thin layer chromatography) and infra-red spectroscopy. The SEC chromatograms using NMP and the solvent mixture NMP: chloroform indicates that similar conclusions can be drawn from using either eluent. The synchronous UV-fluorescence spectra were shifted to longer wavelengths in chloroform solution than in NMP and chloroform may be the better solvent for these tars prepared without extensive secondary thermal treatment. Infra-red spectra indicated differences between the two coal tars that reflected their different ranks, with more oxygenate groups in the lower rank Baganuur coal. Mass spectrometry (GC-MS and probe-MS) of both coal tars confirmed the presence of aliphatic components as well as aromatics and the relatively extensive alkylation of aromatics. Molecular mass ranges indicated for Baganuur tar by SEC compared well with the mass range by LD-MS although the LD-MS extended to higher mass values. The high mass fractions of the tars were revealed by fractionation by thin layer chromatography with the relevant sections of the developed plates inserted directly into the mass spectrometer;laser desorption was directly from the surface of the plate. LD-MS of the unfractionated samples failed to detect the high mass components because of mass discrimination effects. The high mass components were carried over in the distillation by mass transfer of vapours into the condenser.展开更多
The separation of ultrafine coal from three Chinese coal samples of easy degradation coal fines in water has been investigated by the application of a hydrophobic agglomeration process. In addition to yielding clean c...The separation of ultrafine coal from three Chinese coal samples of easy degradation coal fines in water has been investigated by the application of a hydrophobic agglomeration process. In addition to yielding clean coal with high recovery, this process requires significantly less oil concentration for agglomeration (less than 0.4% in oil-water weight ratio) and produces stabler agglomerates than general oil agglomeration process, the cost of the oil would no longer be an important consideration for its commercial application. Neutral diesel oil was used to make oleophilic coal particles agglomerated with good rejection of clay minerals under little oil consumption and certain agitation speed at 2000 r/min. An important advantage of this process compared with other cleaning fine coal methods is that it can extremely reduce or eliminate the effects of coal degradation and some clay minerals on coal preparation.展开更多
基金supported by the Fund of 863 High-Tech Research and Development Program of China and the Poten research project No. YA-2016-003
文摘Magnetically separable mesoporous activated carbon was prepared from brown coal in the presence of Fe3O4 as a bi-functional additive.Magnetic activated carbon(MAC)was characterized by lowtemperature nitrogen adsorption,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and vibrating sample magnetometry(VSM).The evolution behaviors and transition mechanism of Fe3O4 during the preparation of MAC were investigated.The results show that prepared MAC with 6 wt%Fe3O4 addition having a specific surface area and mesopore ratio of 370 m^2·g^-1 and 55.7%,which meet the requirements of adsorption application and magnetic recovery.Highly dispersed iron-containing aggregates with the size of 0.1 lm in the MAC were observed.During the preparation of MAC,Fe3O4 could enhance the escape of volatiles during the carbonization.Fe3O4 could also accelerate burning off the carbon wall during activation,which leads to enlarging micropore size,then resulting in the generation of mesopore and macropore.As a result,a part of Fe3O4 converted into FeO,FeOOH,a-Fe,c-Fe,Fe2SiO4 and compound of Aluminum-iron-silicon.The prepared activated carbon,which was magnetized by both of residual Fe3O4,reduced a-Fe and c-Fe,can be easily separated from the original solution by external magnetic field.
文摘Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.
文摘Dense-medium cyclones have been used for beneficiation of fine particles of coal. In this study, the usability of cyclones in the beneficiation of tailings of a coal preparation plant was investigated. For this purpose, separation tests were conducted using spiral concentrator and heavy medium cyclones with the specific weight of medium 1.3-1.8 (g/cm^3) on different grading fractions of tailing in an industrial scale (the weight of tail sample was five tons). Spiral concentrator was utilized to beneficiate particles smaller than 1 mm. In order to evaluate the efficiency of cyclones, sink and float experiments using a specific weight of 1.3, 1.5, 1.7 and 1.9 g/cm^3, were conducted on a pilot scale. Based on the obtained results, the recovery of floated materials in cyclones with the specific weight of 1.40, 1.47 and 1.55 g/cm^3 are 17.75%, 33.80%, and 50%, respectively. Also, the cut point (Pso), which is the relative density at which particles report equally to the both products are 1.40, 1.67 and 1.86 g/cm^3. The probable errors of separation for defined specific weights for cyclones are 0.080, 0.085 and 0.030, respectively. Also, the coefficients of variation was calculated to be 0.20, 0.12 and 0.03. Finally, it could be said that the performance of a cyclone with a heavy medium of 1.40 g/cm^3 specific weight is desirable compared with other specific weights.
文摘This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.
基金fund major project“Research on China’s Natural Resources Capitalization and Corresponding Market Construction”(No.:15zdb163)Construction project of key disciplines of business administration in Jiangsu Province during the 14th five-year plan(SJYH2022-2/285).
文摘In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.
基金The research was carried out under State Assignment Projects(FWEU-2021-0004,FWEU-2021-0005)of the Fundamental Research Program of Russian Federation 2021-2030.
文摘The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers and boilers with manual load-ing.The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions,as well as the mass of ash and slag waste.The main pollutants from coal combustion are calculated:particulate matter,benz(a)pyrene,nitrogen oxides,sulfur dioxide,carbon monoxide.Of the greenhouse gases carbon dioxide is calculated.As a result of conducted research it is shown that the simplest preliminary preparation(size-graded)of coal significantly improves combustion efficiency and environmental performance:emissions are reduced by 13%for hard coal and up to 20%for brown coal.The introduction of automated boil-ers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2-3 times.The best environmental indicators correspond to heat-treated lignite,which is characterized by the absence of sulfur dioxide emissions.
文摘In this paper the method to calculate intangible quality cost is put forward for the first time based on the production and management characteristics of coal preparation plant. A model for assessment of quality management performance of coal preparation plant is established on the ground of quality cost. By using of CIMS integration environment the strategy to carry out the model and the application example are also offered. It provides a new and feasible way to assess performance quality management of coal preparation plant.
基金The authors gratefully acknowledge the financial support provided by the State Key Research Development Program of China (Grant Number 2016YFC0600705)the National Natural Science Foundation of China (Grant Numbers 51674251, 51727807, and 51374213)+1 种基金the National Major Project for Science and Technology (Grant Number 2017ZX05049003-006)and the Innovation Teams of Ten-thousand Talents Program sponsored by the Ministry of Science and Technology of China (Grant Number 2016RA4067).
文摘Traditional coal mining and utilisation patterns are severely detrimental to natural resources and environments and significantly impede safe, low-carbon, clean, and sustainable utilisation of coal resources. Based on the idea of in situ fluidized coal mining that aims to transform solid coal into liquid or gas and transports the fluidized resources to the ground to ensure safe mining and low-carbon and clean utilisation, in this study, we report on a novel in situ unmanned automatic mining method. This includes a flexible, earthworm-like unmanned automatic mining machine (UAMM) and a coal mine layout for in situ fluidized coal mining suitable for the UAMM. The technological and economic advantages and the carbon emission reduction of the UAMM-based in situ fluidized mining in contrast to traditional mining technologies are evaluated as well. The development trends and possible challenges to this design are also discussed. It is estimated that the proposed method costs approximately 49% of traditional coal mining costs. The UAMM-based in situ fluidized mining and transformation method will reduce CO2 emissions by at least 94.9% compared to traditional coal mining and utilisation methods. The proposed approach is expected to achieve safe and environmentally friendly coal mining as well as lowcarbon and clean utilisation of coal.
文摘The feasibility of preparing flocculant from powdered coal ashes is studied in detail. By means of orthogonal tests, the influence of various factors, such as the activation temperature, the activation time, the ratio of CaO to Al2O3, the hydrochloric acid concentration, the reaction time and the reaction temperature, on preparation is investigated, and the hest operating condition is determined.
基金supported by the National Natural Science Foundation of China(NSFC Grant No. 51706168)
文摘The complex reaction system of the coal gasification coupling C1 reaction was analyzed based on the principles of thermodynamics. The results show that an increase in the temperature is beneficial to the generation of hydrocarbons with high carbon-atom contents, in which the alkane yield is higher than the alkene yield. The complex reaction system consisting of C, H20, CO, CO2, H2, C2H4, C3H6 and C4Hs was studied, and the obtained results indicated that when the maximum mole fraction content of C2-C4 olefins was regarded as the optimized objective function, the optimum temperature was approximately 648 K, the pressure was 0.1 MPa, the feed ratio was approximately 0.6, and the maximum mole fraction content of C2-C4 olefins was approximately 28.24%. The thermodynamic simulation and calculation of the complex reaction system can provide a basis for the determination and optimization of actual process conditions and are therefore of great theoretical and practical significance.
基金support from the National Natural Science Foundation of China(No. 50921002)
文摘Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge. Based on our long-term basic research and technology development, the progress in beneficiation, cleaning, and trans- formation of coal, which includes dense phase fluidized bed dry beneficiation, deep screening of wet fine coal, micro-bubble flotation column separation, molecular coal chemistry, and transformation and sepa- ration of coal and its derivatives into value-added chemicals under mild conditions, is discussed.
文摘Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucking technique of soft coal with low permeability. It is clearly pointed out that the gas can be highly effectively sucked only by compression fracture along the occurrence of the coal seam, creating inter-seams crack belt because of the difference of bulgy deformation. After the flooding experiment in the 24080 workface of Pingdingshan No. 10 mine, the average single-bore volume of gas increases from 77 m3 to 7 893 mS, while decay cycle extended from 7 days to 80-90 days. Also, the single-bore extracting rate of gas increases to 33%.
文摘Tars from two Mongolian coals (Tavan Tolgoi and Baganuur) produced by simple distillation have been characterized using size exclusion chromatography (SEC) with elution in both 1-methyl-2-pyrrolidinone (NMP) and a mixed solvent (NMP and chloroform), UV-fluorescence in chloroform and NMP, gas chromatography (GC), mass spectrometry (GC-MS, probe-MS and LD-MS with thin layer chromatography) and infra-red spectroscopy. The SEC chromatograms using NMP and the solvent mixture NMP: chloroform indicates that similar conclusions can be drawn from using either eluent. The synchronous UV-fluorescence spectra were shifted to longer wavelengths in chloroform solution than in NMP and chloroform may be the better solvent for these tars prepared without extensive secondary thermal treatment. Infra-red spectra indicated differences between the two coal tars that reflected their different ranks, with more oxygenate groups in the lower rank Baganuur coal. Mass spectrometry (GC-MS and probe-MS) of both coal tars confirmed the presence of aliphatic components as well as aromatics and the relatively extensive alkylation of aromatics. Molecular mass ranges indicated for Baganuur tar by SEC compared well with the mass range by LD-MS although the LD-MS extended to higher mass values. The high mass fractions of the tars were revealed by fractionation by thin layer chromatography with the relevant sections of the developed plates inserted directly into the mass spectrometer;laser desorption was directly from the surface of the plate. LD-MS of the unfractionated samples failed to detect the high mass components because of mass discrimination effects. The high mass components were carried over in the distillation by mass transfer of vapours into the condenser.
文摘The separation of ultrafine coal from three Chinese coal samples of easy degradation coal fines in water has been investigated by the application of a hydrophobic agglomeration process. In addition to yielding clean coal with high recovery, this process requires significantly less oil concentration for agglomeration (less than 0.4% in oil-water weight ratio) and produces stabler agglomerates than general oil agglomeration process, the cost of the oil would no longer be an important consideration for its commercial application. Neutral diesel oil was used to make oleophilic coal particles agglomerated with good rejection of clay minerals under little oil consumption and certain agitation speed at 2000 r/min. An important advantage of this process compared with other cleaning fine coal methods is that it can extremely reduce or eliminate the effects of coal degradation and some clay minerals on coal preparation.