This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional me...This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional methodologies struggle with the challenges posed by luminosity fluctuations,especially in settings characterized by diminished radiance,further exacerbated by the utilization of suboptimal imaging instrumentation.The envisioned approach mandates a departure from the conventional YOLOX model,which exhibits inadequacies in mitigating these challenges.To enhance the efficacy of this approach in low-light conditions,the dehazing algorithm undergoes refinement,effecting a discerning regulation of the transmission rate at the pixel level,reducing it to values below 0.5,thereby resulting in an augmentation of image contrast.Subsequently,the coiflet wavelet transform is employed to discern and isolate high-discriminatory attributes by dismantling low-frequency image attributes and extracting high-frequency attributes across divergent axes.The utilization of CycleGAN serves to elevate the features of low-light imagery across an array of stylistic variances.Advanced computational methodologies are then employed to amalgamate and conflate intricate attributes originating from images characterized by distinct stylistic orientations,thereby augmenting the model’s erudition potential.Empirical validation conducted on the PASCAL VOC and MS COCO 2017 datasets substantiates pronounced advancements.The refined low-light enhancement algorithm yields a discernible 5.9%augmentation in the target detection evaluation index when compared to the original imagery.Mean Average Precision(mAP)undergoes enhancements of 9.45%and 0.052%in low-light visual renditions relative to conventional YOLOX outcomes.The envisaged approach presents a myriad of advantages over prevailing benchmark methodologies in the realm of target detection within environments marked by an acute scarcity of luminosity.展开更多
Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but ...Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.展开更多
Due to their excellent carrier mobility,high absorption coefficient and narrow bandgap,most 2D IVA metal chalcogenide semiconductors(GIVMCs,metal=Ge,Sn,Pb;chalcogen=S,Se)are regarded as promising candidates for realiz...Due to their excellent carrier mobility,high absorption coefficient and narrow bandgap,most 2D IVA metal chalcogenide semiconductors(GIVMCs,metal=Ge,Sn,Pb;chalcogen=S,Se)are regarded as promising candidates for realizing high-performance photodetectors.We synthesized high-quality two-dimensional(2D)tin sulfide(SnS)nanosheets using the physical vapor deposition(PVD)method and fabricated a 2D SnS visible-light photodetector.The photodetector exhibits a high photoresponsivity of 161 A·W-1 and possesses an external quantum efficiency of 4.45×10^(4)%,as well as a detectivity of 1.15×10^(9) Jones under 450 nm blue light illumination.Moreover,under poor illumination at optical densities down to 2 mW·cm^(-2),the responsivity of the device is higher than that at stronger optical densities.We suggest that a photogating effect in the 2D SnS photodetector is mainly responsible for its low-light responsivity.Defects and impurities in 2D SnS can trap carriers and form localized electric fields,which can delay the recombination process of electron-hole pairs,prolong carrier lifetimes,and thus improve the low-light responsivity.This work provides design strategies for detecting low levels of light using photodetectors made of 2D materials.展开更多
Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propo...Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propose a two-stage unsupervised low-light image enhancement algorithm called Retinex and Exposure Fusion Network(RFNet),which can overcome the problems of over-enhancement of the high dynamic range and under-enhancement of the low dynamic range in existing enhancement algorithms.This algorithm can better manage the challenges brought about by complex environments in real-world scenarios by training with unpaired low-light images and regular-light images.In the first stage,we design a multi-scale feature extraction module based on Retinex theory,capable of extracting details and structural information at different scales to generate high-quality illumination and reflection images.In the second stage,an exposure image generator is designed through the camera response mechanism function to acquire exposure images containing more dark features,and the generated images are fused with the original input images to complete the low-light image enhancement.Experiments show the effectiveness and rationality of each module designed in this paper.And the method reconstructs the details of contrast and color distribution,outperforms the current state-of-the-art methods in both qualitative and quantitative metrics,and shows excellent performance in the real world.展开更多
Unmanned aerial vehicle (UAV) target tracking tasks can currently be successfully completed in daytime situations with enough lighting, but they are unable to do so in nighttime scenes with inadequate lighting, poor c...Unmanned aerial vehicle (UAV) target tracking tasks can currently be successfully completed in daytime situations with enough lighting, but they are unable to do so in nighttime scenes with inadequate lighting, poor contrast, and low signal-to-noise ratio. This letter presents an enhanced low-light enhancer for UAV nighttime tracking based on Zero-DCE++ due to its ad-vantages of low processing cost and quick inference. We developed a light-weight UCBAM capable of integrating channel information and spatial features and offered a fully considered curve projection model in light of the low signal-to-noise ratio of night scenes. This method significantly improved the tracking performance of the UAV tracker in night situations when tested on the public UAVDark135 and compared to other cutting-edge low-light enhancers. By applying our work to different trackers, this search shows how broadly applicable it is.展开更多
A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on differe...A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on difference processing. To obtain spatial relativity, images are shifted according to the motion parameters. As a result, the processing of integral and average can be applied to images that have been shifted. The technique of frame shift and integral that includes the algorithm of motion parameter determination is discussed, experiments with low light level moving image sequences are also described. The experiment results show the effectiveness and the robustness of the parameter determination algorithm, and the improvement in the signal-to-noise ratio (SNR) of low light level moving images.展开更多
Most learning-based low-light image enhancement methods typically suffer from two problems.First,they require a large amount of paired data for training,which are difficult to acquire in most cases.Second,in the proce...Most learning-based low-light image enhancement methods typically suffer from two problems.First,they require a large amount of paired data for training,which are difficult to acquire in most cases.Second,in the process of enhancement,image noise is difficult to be removed and may even be amplified.In other words,performing denoising and illumination enhancement at the same time is difficult.As an alternative to supervised learning strategies that use a large amount of paired data,as presented in previous work,this paper presents an mixed-attention guided generative adversarial network called MAGAN for low-light image enhancement in a fully unsupervised fashion.We introduce a mixed-attention module layer,which can model the relationship between each pixel and feature of the image.In this way,our network can enhance a low-light image and remove its noise simultaneously.In addition,we conduct extensive experiments on paired and no-reference datasets to show the superiority of our method in enhancing low-light images.展开更多
Poor illumination greatly affects the quality of obtained images.In this paper,a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement.DEANet combines the ...Poor illumination greatly affects the quality of obtained images.In this paper,a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement.DEANet combines the frequency and content information of images and is divided into three subnetworks:decomposition,enhancement,and adjustment networks,which perform image decomposition;denoising,contrast enhancement,and detail preservation;and image adjustment and generation,respectively.The model is trained on the public LOL dataset,and the experimental results show that it outperforms the existing state-of-the-art methods regarding visual effects and image quality.展开更多
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV col...A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.展开更多
In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the propo...In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images.展开更多
The poor quality of images recorded in low-light environments affects their further applications.To improve the visibility of low-light images,we propose a recurrent network based on filter-cluster attention(FCA),the ...The poor quality of images recorded in low-light environments affects their further applications.To improve the visibility of low-light images,we propose a recurrent network based on filter-cluster attention(FCA),the main body of which consists of three units:difference concern,gate recurrent,and iterative residual.The network performs multi-stage recursive learning on low-light images,and then extracts deeper feature information.To compute more accurate dependence,we design a novel FCA that focuses on the saliency of feature channels.FCA and self-attention are used to highlight the low-light regions and important channels of the feature.We also design a dense connection pyramid(DenCP)to extract the color features of the low-light inversion image,to compensate for the loss of the image's color information.Experimental results on six public datasets show that our method has outstanding performance in subjective and quantitative comparisons.展开更多
In recent years,learning-based low-light image enhancement methods have shown excellent performance,but the heuristic design adopted by most methods requires high engineering skills for developers,causing expensive in...In recent years,learning-based low-light image enhancement methods have shown excellent performance,but the heuristic design adopted by most methods requires high engineering skills for developers,causing expensive inference costs that are unfriendly to the hardware platform.To handle this issue,we propose to automatically discover an efficient architecture,called progressive attentive Retinex network(PAR-Net).We define a new attentive Retinex framework by introducing the attention mechanism to strengthen structural representation.A multi-level search space containing micro-level on the operation and macro-level on the cell is established to realize meticulous construction.To endow the searched architecture with the hardware-aware property,we develop a latency-constrained progressive search strategy that successfully improves the model capability by explicitly expressing the intrinsic relationship between different models defined in the attentive Retinex framework.Extensive quantitative and qualitative experimental results fully justify the superiority of our proposed approach against other state-of-the-art methods.A series of analytical evaluations is performed to illustrate the validity of our proposed algorithm.展开更多
In unstructured environments such as disaster sites and mine tunnels,it is a challenge for robots to estimate the poses of objects under complex lighting backgrounds,which limit their operation.Owing to the shadows pr...In unstructured environments such as disaster sites and mine tunnels,it is a challenge for robots to estimate the poses of objects under complex lighting backgrounds,which limit their operation.Owing to the shadows produced by a point light source,the brightness of the operation scene is seriously unbalanced,and it is difficult to accurately extract the features of objects.It is especially difficult to accurately label the poses of objects with weak corners and textures.This study proposes an automatic pose annotation method for such objects,which combine 3D-2D matching projection and rendering technology to improve the efficiency of dataset annotation.A 6D object pose estimation method under low-light conditions(LP_TGC)is then proposed,including(1)a light preprocessing neural network model based on a low-light preprocessing module(LPM)to balance the brightness of a picture and improve its quality;and(2)a 6D pose estimation model(TGC)based on the keypoint matching.Four typical datasets are constructed to verify our method,the experimental results validated and demonstrated the effectiveness of the proposed LP_TGC method.The estimation model based on the preprocessed image can accurately estimate the pose of the object in the mentioned unstructured environments,and it can improve the accuracy by an average of~3%based on the ADD metric.展开更多
基金supported by National Sciences Foundation of China Grants(No.61902158).
文摘This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional methodologies struggle with the challenges posed by luminosity fluctuations,especially in settings characterized by diminished radiance,further exacerbated by the utilization of suboptimal imaging instrumentation.The envisioned approach mandates a departure from the conventional YOLOX model,which exhibits inadequacies in mitigating these challenges.To enhance the efficacy of this approach in low-light conditions,the dehazing algorithm undergoes refinement,effecting a discerning regulation of the transmission rate at the pixel level,reducing it to values below 0.5,thereby resulting in an augmentation of image contrast.Subsequently,the coiflet wavelet transform is employed to discern and isolate high-discriminatory attributes by dismantling low-frequency image attributes and extracting high-frequency attributes across divergent axes.The utilization of CycleGAN serves to elevate the features of low-light imagery across an array of stylistic variances.Advanced computational methodologies are then employed to amalgamate and conflate intricate attributes originating from images characterized by distinct stylistic orientations,thereby augmenting the model’s erudition potential.Empirical validation conducted on the PASCAL VOC and MS COCO 2017 datasets substantiates pronounced advancements.The refined low-light enhancement algorithm yields a discernible 5.9%augmentation in the target detection evaluation index when compared to the original imagery.Mean Average Precision(mAP)undergoes enhancements of 9.45%and 0.052%in low-light visual renditions relative to conventional YOLOX outcomes.The envisaged approach presents a myriad of advantages over prevailing benchmark methodologies in the realm of target detection within environments marked by an acute scarcity of luminosity.
基金supported by the National Natural Science Foundation of China(62276192)。
文摘Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.
基金the National Natural Science Foundation of China(Grant Nos.1872251 and 11875229).
文摘Due to their excellent carrier mobility,high absorption coefficient and narrow bandgap,most 2D IVA metal chalcogenide semiconductors(GIVMCs,metal=Ge,Sn,Pb;chalcogen=S,Se)are regarded as promising candidates for realizing high-performance photodetectors.We synthesized high-quality two-dimensional(2D)tin sulfide(SnS)nanosheets using the physical vapor deposition(PVD)method and fabricated a 2D SnS visible-light photodetector.The photodetector exhibits a high photoresponsivity of 161 A·W-1 and possesses an external quantum efficiency of 4.45×10^(4)%,as well as a detectivity of 1.15×10^(9) Jones under 450 nm blue light illumination.Moreover,under poor illumination at optical densities down to 2 mW·cm^(-2),the responsivity of the device is higher than that at stronger optical densities.We suggest that a photogating effect in the 2D SnS photodetector is mainly responsible for its low-light responsivity.Defects and impurities in 2D SnS can trap carriers and form localized electric fields,which can delay the recombination process of electron-hole pairs,prolong carrier lifetimes,and thus improve the low-light responsivity.This work provides design strategies for detecting low levels of light using photodetectors made of 2D materials.
基金supported by the National Key Research and Development Program Topics(Grant No.2021YFB4000905)the National Natural Science Foundation of China(Grant Nos.62101432 and 62102309)in part by Shaanxi Natural Science Fundamental Research Program Project(No.2022JM-508).
文摘Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propose a two-stage unsupervised low-light image enhancement algorithm called Retinex and Exposure Fusion Network(RFNet),which can overcome the problems of over-enhancement of the high dynamic range and under-enhancement of the low dynamic range in existing enhancement algorithms.This algorithm can better manage the challenges brought about by complex environments in real-world scenarios by training with unpaired low-light images and regular-light images.In the first stage,we design a multi-scale feature extraction module based on Retinex theory,capable of extracting details and structural information at different scales to generate high-quality illumination and reflection images.In the second stage,an exposure image generator is designed through the camera response mechanism function to acquire exposure images containing more dark features,and the generated images are fused with the original input images to complete the low-light image enhancement.Experiments show the effectiveness and rationality of each module designed in this paper.And the method reconstructs the details of contrast and color distribution,outperforms the current state-of-the-art methods in both qualitative and quantitative metrics,and shows excellent performance in the real world.
文摘Unmanned aerial vehicle (UAV) target tracking tasks can currently be successfully completed in daytime situations with enough lighting, but they are unable to do so in nighttime scenes with inadequate lighting, poor contrast, and low signal-to-noise ratio. This letter presents an enhanced low-light enhancer for UAV nighttime tracking based on Zero-DCE++ due to its ad-vantages of low processing cost and quick inference. We developed a light-weight UCBAM capable of integrating channel information and spatial features and offered a fully considered curve projection model in light of the low signal-to-noise ratio of night scenes. This method significantly improved the tracking performance of the UAV tracker in night situations when tested on the public UAVDark135 and compared to other cutting-edge low-light enhancers. By applying our work to different trackers, this search shows how broadly applicable it is.
文摘A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on difference processing. To obtain spatial relativity, images are shifted according to the motion parameters. As a result, the processing of integral and average can be applied to images that have been shifted. The technique of frame shift and integral that includes the algorithm of motion parameter determination is discussed, experiments with low light level moving image sequences are also described. The experiment results show the effectiveness and the robustness of the parameter determination algorithm, and the improvement in the signal-to-noise ratio (SNR) of low light level moving images.
基金supported in part by the National Natural Science Foundation of China(No.62072169)Changsha Science and Technology Research Plan(No.KQ2004005)
文摘Most learning-based low-light image enhancement methods typically suffer from two problems.First,they require a large amount of paired data for training,which are difficult to acquire in most cases.Second,in the process of enhancement,image noise is difficult to be removed and may even be amplified.In other words,performing denoising and illumination enhancement at the same time is difficult.As an alternative to supervised learning strategies that use a large amount of paired data,as presented in previous work,this paper presents an mixed-attention guided generative adversarial network called MAGAN for low-light image enhancement in a fully unsupervised fashion.We introduce a mixed-attention module layer,which can model the relationship between each pixel and feature of the image.In this way,our network can enhance a low-light image and remove its noise simultaneously.In addition,we conduct extensive experiments on paired and no-reference datasets to show the superiority of our method in enhancing low-light images.
基金This work was supported by the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2019-048)the Cross-Media Intelligent Technology Project of Beijing National Research Center for Information Science and Technology(BNRist)(No.BNR2019TD01022).
文摘Poor illumination greatly affects the quality of obtained images.In this paper,a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement.DEANet combines the frequency and content information of images and is divided into three subnetworks:decomposition,enhancement,and adjustment networks,which perform image decomposition;denoising,contrast enhancement,and detail preservation;and image adjustment and generation,respectively.The model is trained on the public LOL dataset,and the experimental results show that it outperforms the existing state-of-the-art methods regarding visual effects and image quality.
基金supported by the China Scholarship CouncilPostgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0776)the Natural Science Foundation of NUPT(No.NY214039)
文摘A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
基金supported by the National Natural Science Foundation of China (61501260)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0776)the Research Project of Nanjing University of Posts and Telecommunications (NY218089&NY219076)
文摘In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images.
基金Project supported by the National Natural Science Foundation of China(Nos.61772319,62002200,and 62202268)the Shandong Natural Science Foundation of China(Nos.ZR2021QF134and ZR2021MF107)+1 种基金the Shandong Provincial Science and Technology Support Program for Youth Innovation Team in Colleges(Nos.2021KJ069 and 2019KJN042)the Yantai Science and Technology Innovation Development Plan(No.2022JCYJ031)。
文摘The poor quality of images recorded in low-light environments affects their further applications.To improve the visibility of low-light images,we propose a recurrent network based on filter-cluster attention(FCA),the main body of which consists of three units:difference concern,gate recurrent,and iterative residual.The network performs multi-stage recursive learning on low-light images,and then extracts deeper feature information.To compute more accurate dependence,we design a novel FCA that focuses on the saliency of feature channels.FCA and self-attention are used to highlight the low-light regions and important channels of the feature.We also design a dense connection pyramid(DenCP)to extract the color features of the low-light inversion image,to compensate for the loss of the image's color information.Experimental results on six public datasets show that our method has outstanding performance in subjective and quantitative comparisons.
文摘In recent years,learning-based low-light image enhancement methods have shown excellent performance,but the heuristic design adopted by most methods requires high engineering skills for developers,causing expensive inference costs that are unfriendly to the hardware platform.To handle this issue,we propose to automatically discover an efficient architecture,called progressive attentive Retinex network(PAR-Net).We define a new attentive Retinex framework by introducing the attention mechanism to strengthen structural representation.A multi-level search space containing micro-level on the operation and macro-level on the cell is established to realize meticulous construction.To endow the searched architecture with the hardware-aware property,we develop a latency-constrained progressive search strategy that successfully improves the model capability by explicitly expressing the intrinsic relationship between different models defined in the attentive Retinex framework.Extensive quantitative and qualitative experimental results fully justify the superiority of our proposed approach against other state-of-the-art methods.A series of analytical evaluations is performed to illustrate the validity of our proposed algorithm.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB1305300)the China Postdoctoral Science Foundation(Grant Nos.2020TQ0039 and 2021M700425)the National Natural Science Foundation of China(Grant Nos.61733001,62103054,U2013602,61873039,U1913211 and U1713215)。
文摘In unstructured environments such as disaster sites and mine tunnels,it is a challenge for robots to estimate the poses of objects under complex lighting backgrounds,which limit their operation.Owing to the shadows produced by a point light source,the brightness of the operation scene is seriously unbalanced,and it is difficult to accurately extract the features of objects.It is especially difficult to accurately label the poses of objects with weak corners and textures.This study proposes an automatic pose annotation method for such objects,which combine 3D-2D matching projection and rendering technology to improve the efficiency of dataset annotation.A 6D object pose estimation method under low-light conditions(LP_TGC)is then proposed,including(1)a light preprocessing neural network model based on a low-light preprocessing module(LPM)to balance the brightness of a picture and improve its quality;and(2)a 6D pose estimation model(TGC)based on the keypoint matching.Four typical datasets are constructed to verify our method,the experimental results validated and demonstrated the effectiveness of the proposed LP_TGC method.The estimation model based on the preprocessed image can accurately estimate the pose of the object in the mentioned unstructured environments,and it can improve the accuracy by an average of~3%based on the ADD metric.