We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is forme...We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is formed on the basis of any of the possible algorithms for determining the distances between DNA chains, as well as any specific object of study. At the same time, for example, the practical programming results show that on an average modern computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needleman-Wunsch algorithm;therefore, for such a 300 × 300 matrix, about 3 months of continuous computer operation is expected. Thus, even for a relatively small number of species, calculating the distance matrix on conventional computers is hardly feasible and the supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains, then we publish algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. Previously, we used the method of branches and boundaries, but in this paper we propose to use another new algorithm for restoring the distance matrix for DNA chains. Our recent work has shown that even greater improvement in the quality of the algorithm can often be achieved without improving the auxiliary heuristics of the branches and boundaries method. Thus, we are improving the algorithms that formulate the greedy function of this method only. .展开更多
The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number o...The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number of the supporting legs,the increased overdetermination of the multi-leg platform systems leads to leveling coupling problem among legs and virtual leg problem in which some of the supporting legs bear zero or quasi zero loads.These problems make it quite complex and time consuming to level such a multi-leg platform.Based on rigid body kinematics,an approximate equation is formulated to rapidly calculate the leg extension for leveling a rigid platform,then a proportional speed control strategy is proposed to reduce the unexpected platform distortion and leveling coupling between supporting legs.Taking both the load coupling between supporting legs and the elastic flexibility of the working platform into consideration,an optimal balancing legs’ loads(OBLL) model is firstly put forward to deal with the traditional virtual leg problem.By taking advantage of the concept of supporting stiffness matrix,a coupling extension method(CEM) is developed to solve this OBLL problem for multi-leg flexible platform.At the end,with the concept of supporting stiffness matrix and static transmissibility matrix,an optimal load balancing leveling method is proposed to achieve geometric leveling and legs’ loads balancing simultaneously.Three numerical examples are given out to illustrate the performance of proposed methods.This paper proposes a method which can effectively quantify all of the legs’ extension at the same time,achieve geometric leveling and legs’ loads balancing simultaneously.By using the proposed methods,the stability,precision and efficiency of auto-leveling control process can be improved.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
文摘We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is formed on the basis of any of the possible algorithms for determining the distances between DNA chains, as well as any specific object of study. At the same time, for example, the practical programming results show that on an average modern computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needleman-Wunsch algorithm;therefore, for such a 300 × 300 matrix, about 3 months of continuous computer operation is expected. Thus, even for a relatively small number of species, calculating the distance matrix on conventional computers is hardly feasible and the supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains, then we publish algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. Previously, we used the method of branches and boundaries, but in this paper we propose to use another new algorithm for restoring the distance matrix for DNA chains. Our recent work has shown that even greater improvement in the quality of the algorithm can often be achieved without improving the auxiliary heuristics of the branches and boundaries method. Thus, we are improving the algorithms that formulate the greedy function of this method only. .
基金supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2010EL003)
文摘The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number of the supporting legs,the increased overdetermination of the multi-leg platform systems leads to leveling coupling problem among legs and virtual leg problem in which some of the supporting legs bear zero or quasi zero loads.These problems make it quite complex and time consuming to level such a multi-leg platform.Based on rigid body kinematics,an approximate equation is formulated to rapidly calculate the leg extension for leveling a rigid platform,then a proportional speed control strategy is proposed to reduce the unexpected platform distortion and leveling coupling between supporting legs.Taking both the load coupling between supporting legs and the elastic flexibility of the working platform into consideration,an optimal balancing legs’ loads(OBLL) model is firstly put forward to deal with the traditional virtual leg problem.By taking advantage of the concept of supporting stiffness matrix,a coupling extension method(CEM) is developed to solve this OBLL problem for multi-leg flexible platform.At the end,with the concept of supporting stiffness matrix and static transmissibility matrix,an optimal load balancing leveling method is proposed to achieve geometric leveling and legs’ loads balancing simultaneously.Three numerical examples are given out to illustrate the performance of proposed methods.This paper proposes a method which can effectively quantify all of the legs’ extension at the same time,achieve geometric leveling and legs’ loads balancing simultaneously.By using the proposed methods,the stability,precision and efficiency of auto-leveling control process can be improved.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.