Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan...Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.展开更多
The fixed-setting face-milled curvilinear cylindrical gear features teeth that are arc-shaped along the longitudinal direction.Some researchers hypothesize that this arc-tooth may enhance the lubrication conditions of...The fixed-setting face-milled curvilinear cylindrical gear features teeth that are arc-shaped along the longitudinal direction.Some researchers hypothesize that this arc-tooth may enhance the lubrication conditions of the gear.This study focuses on this type of gear,employing both finite element analysis(FEA)and analytical methods to determine the input parameters required for elastohydrodynamic lubrication(EHL)analysis.The effects of assembly errors,tooth surface modifications,load,and face-milling cutter radius on the lubrication performance of these gears are systematically investigated.The finite element model(FEM)of the gear pair is utilized to calculate the coordinates of contact points on the tooth surface and the corresponding contact pressures at the tooth surface nodes throughout a meshing cycle.Subsequently,the normal load on specific gear teeth is determined using a gradient-based approach.Entrainment speed,slip-to-roll ratio,and effective radius near the contact points on the tooth surface are derived through analytical methods.The data obtained from FEA serve as input parameters for EHL simulations.The lubrication performance of the curvilinear cylindrical gear is evaluated through example studies.The findings indicate that using FEA to provide input parameters for EHL simulations can reveal the occurrence of edge contact phenomena during gear meshing,allowing for a more accurate representation of the gear’s lubrication conditions.The lubrication performance of the curvilinear cylindrical gear is shown to be independent of the face-milling cutter radius but is significantly influenced by the size of the contact pattern on the tooth surface.Curvilinear gears with larger contact patterns demonstrate superior lubrication performance.展开更多
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the...Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.展开更多
To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal q...To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.展开更多
The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol ...The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.展开更多
The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lu...The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lubricated well and has shown remarkable tribological performance. Average coefficient of friction (COF) of Nitinol 60 is 0.6 under dry friction; however, average COF decreases to 0.1 under PAO oil lubrication. SEM image of the worn surface shows that Nitinol 60 exhibits excellent wear resistance and the wear mechanism is mainly adhesive wear. Flow pattern of oil-air flow in oil pipe was simulated by FLUENT software with VOF model for acquiring working performance of oil-air lubrication. The optimum velocity of oil and air at the inlet was achieved, which provides the great proposal for the design of experiment of oil-air lubrication of Nitinol 60 alloy. The simulation results showed that the optimum annular flow of flow pattern was obtained when air velocity is 10 m/s and oil velocity is 0.05 m/s. The formation mechanism of annular flow was also discussed in the present study.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415,and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-Ⅳ-002-001 and P2023-B-Ⅳ-003-001)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the National Key Laboratory of Science and Technology on Helicopter Transmission in NUAA(No.HTL-A-22G12)。
文摘Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.
基金funded by the Sichuan Science and Technology Program(Project Nos.2024NSFSC0140,2023NSFSC0414,2022NSFSC0454)Panzhihua City Provincial Targeted Financial Resources Transfer Payment(Grant No.222Y2F-GG-04)+4 种基金Open Project of the Key Laboratory of Process Equipment and Control in Sichuan Province(ProjectNo.GK202211)Cultivation Research Project of PanzhihuaUniversity(ProjectNo.2023PY11)Open Project of Sichuan Provincial Engineering Technology Research Center for Advanced Manufacturing of Titanium Alloys(Project No.TM-2023-Z-02)Open Project of Panzhihua Key Laboratory of Advanced Manufacturing Technology(Project No.2022XJZD05).
文摘The fixed-setting face-milled curvilinear cylindrical gear features teeth that are arc-shaped along the longitudinal direction.Some researchers hypothesize that this arc-tooth may enhance the lubrication conditions of the gear.This study focuses on this type of gear,employing both finite element analysis(FEA)and analytical methods to determine the input parameters required for elastohydrodynamic lubrication(EHL)analysis.The effects of assembly errors,tooth surface modifications,load,and face-milling cutter radius on the lubrication performance of these gears are systematically investigated.The finite element model(FEM)of the gear pair is utilized to calculate the coordinates of contact points on the tooth surface and the corresponding contact pressures at the tooth surface nodes throughout a meshing cycle.Subsequently,the normal load on specific gear teeth is determined using a gradient-based approach.Entrainment speed,slip-to-roll ratio,and effective radius near the contact points on the tooth surface are derived through analytical methods.The data obtained from FEA serve as input parameters for EHL simulations.The lubrication performance of the curvilinear cylindrical gear is evaluated through example studies.The findings indicate that using FEA to provide input parameters for EHL simulations can reveal the occurrence of edge contact phenomena during gear meshing,allowing for a more accurate representation of the gear’s lubrication conditions.The lubrication performance of the curvilinear cylindrical gear is shown to be independent of the face-milling cutter radius but is significantly influenced by the size of the contact pattern on the tooth surface.Curvilinear gears with larger contact patterns demonstrate superior lubrication performance.
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金Funded by Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202212905)Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxmX0453)。
文摘Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.
基金Supported by the National Natural Science Foundation of China(50975141,51005118)~~
文摘To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.
基金Project(51305331)supported by the National Natural Science Foundation of ChinaProject(2012M511993)supported by China Postdoctoral Science FoundationProject(TPL1202)supported by the Open Fund Program of the State Key Laboratory of Traction Power,Southwest Jiaotong University,China
文摘The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.
基金Project (2012M511993) supported by China Postdoctoral Science FoundationProject (TPL1202) supported by the Open Fund Program of the State Key Laboratory of Traction Power, Southwest Jiaotong University, China
文摘The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lubricated well and has shown remarkable tribological performance. Average coefficient of friction (COF) of Nitinol 60 is 0.6 under dry friction; however, average COF decreases to 0.1 under PAO oil lubrication. SEM image of the worn surface shows that Nitinol 60 exhibits excellent wear resistance and the wear mechanism is mainly adhesive wear. Flow pattern of oil-air flow in oil pipe was simulated by FLUENT software with VOF model for acquiring working performance of oil-air lubrication. The optimum velocity of oil and air at the inlet was achieved, which provides the great proposal for the design of experiment of oil-air lubrication of Nitinol 60 alloy. The simulation results showed that the optimum annular flow of flow pattern was obtained when air velocity is 10 m/s and oil velocity is 0.05 m/s. The formation mechanism of annular flow was also discussed in the present study.