Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal q...To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.展开更多
Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the...Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.展开更多
The minimum quantity of lubrication(MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving lubricant costs...The minimum quantity of lubrication(MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability.However,the effect of MQL parameters on machining is still not clear,which needs to be overcome.In this paper,the effect of different modes of lubrication,i.e.,conventional way using flushing,dry cutting and using the minimum quantity lubrication(MQL) technique on the machinability in end milling of a forged steel(50CrMnMo),is investigated.The influence of MQL parameters on tool wear and surface roughness is also discussed.MQL parameters include nozzle direction in relation to feed direction,nozzle elevation angle,distance from the nozzle tip to the cutting zone,lubricant flow rate and air pressure.The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions.Based on the investigations of chip morphology and color,MQL technique reduces the cutting temperature to some extent.The relative nozzle-feed position at 120°,the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values.This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way.Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure.Moreover,oil flow rate increased from 43.8 mL?h to 58.4 mL?h leads to a small decrease of flank wear,but it is not very significant.The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.展开更多
The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol ...The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.展开更多
The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lu...The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lubricated well and has shown remarkable tribological performance. Average coefficient of friction (COF) of Nitinol 60 is 0.6 under dry friction; however, average COF decreases to 0.1 under PAO oil lubrication. SEM image of the worn surface shows that Nitinol 60 exhibits excellent wear resistance and the wear mechanism is mainly adhesive wear. Flow pattern of oil-air flow in oil pipe was simulated by FLUENT software with VOF model for acquiring working performance of oil-air lubrication. The optimum velocity of oil and air at the inlet was achieved, which provides the great proposal for the design of experiment of oil-air lubrication of Nitinol 60 alloy. The simulation results showed that the optimum annular flow of flow pattern was obtained when air velocity is 10 m/s and oil velocity is 0.05 m/s. The formation mechanism of annular flow was also discussed in the present study.展开更多
The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently...The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently, the Jacobian matrices of the oil film forces are concisely obtained. The equilibrium position of the bearing with a given static load is found by the Newton-Raphson method. As byproducts, dynamic coefficients are obtained simultaneously without any extra computing time. From the numerical results, it is concluded that the effects of film temperature on stiffness coefficients are bigger than those on damping coefficients. With the increase of rotational speed, the load capacity and the stiffness coefficients of the journal bearing are increased when the eccentricity is small, while decreased when the eccentricity is big.展开更多
Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation o...Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation outcome are brought forward. As a dynamic simulating technique is introduced into the process of engine bearing design, simulation models of the oil film are built and the emulational analysis of the shaft center track is carried out. A software program package “Engine Bearing Friction and Lubrication Dynamic Simulation System” is developed to realize the real time simulation of the working status of bearing during the design process. Through developing virtualized products, the defects of the product design can be found in time and improve the products at once. Thus the purpose of predicting and controlling the cost, quality and design period of the products can be achieved.展开更多
In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inhere...In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.展开更多
Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials....Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials. Iron-based samples were prepared by die wall lubricated warm compaction at 135 ℃ and 175 ℃, using polytetrafluoroethylene (PTFE) emulsion as die wall lubricant. A compacting pressure of 700 MPa and 550 MPa were used. The admixed lubricant concentration ranging from 0 to 0.6 wt.% was used in this study. Compared with non-die wall lubricated samples, the die wall lubricated samples have higher green densities. Results show that in addition to the decrease in ejection forces, green density of the compacts increased linearly with the decrease in admixed lubricant content. Mechanical property of the sintered compacts increase sharply when the admixed lubricant concentration reduced to 0.125 wt.% or less. Ejection force data indicated that samples with die wall lubrication show lower ejection forces when compared with samples without die wall lubrication. No scoring was observed in all experiments even for samples contain no admixed lubricant. Our results indicated that under experimental condition used in this study, no matter at which compaction pressure, compaction temperature, graphite and lubricant contents in the powder the die wall lubricated warm compaction would give the highest green density and lowest ejection force. It can be concluded that combination of die wall lubrication and warm compaction can provide P/M products with higher density and better quality. It is a feasible way to produce high performance P/M parts if suitable die wall lubrication system was applied.展开更多
Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanop...Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanoparticles improve not only the heat transfer capacity but also the lubrication performance.The physical and chemical proper-ties of nanofluid change when Al_(2)O_(3)nanoparticles are added.However,the effects of the concentration of nanofluid on lubrication performance remain unknown.Furthermore,the mechanisms of interaction between Al_(2)O_(3)nanoparti-cles and cottonseed oil are unclear.In this research,nanofluid is prepared by adding different mass concentrations of Al_(2)O_(3)nanoparticles(0,0.2%,0.5%,1%,1.5%,and 2%wt)to cottonseed oil during minimum quantity lubrication(MQL)milling 45 steel.The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters(milling force,specific energy)and micro-evaluation parameters(surface roughness,micro morphology,contact angle).The result show that the specific energy is at the minimum(114 J/mm^(3)),and the roughness value is the lowest(1.63μm)when the concentration is 0.5 wt%.The surfaces of the chip and workpiece are the smoothest,and the contact angle is the lowest,indicating that the tribological proper-ties are the best under 0.5 wt%.This research investigates the intercoupling mechanisms of Al_(2)O_(3)nanoparticles and cottonseed base oil,and acquires the optimal Al_(2)O_(3)nanofluid concentration to receive satisfactory tribological properties.展开更多
The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other...The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.展开更多
Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common meth...Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil.展开更多
The effects of oil film on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were use...The effects of oil film on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were used to obtain different oil film thicknesses. Results from experiment and calculation show that the thicker oil film protects the initial roughening surface so that it leads to an increase in roughness of the rolled surface, in particular when the surface roughness has the character of direction. The rolled surface roughness was determined by 2, which is the ratio of oil film thickness to the combined surface roughness. When 2 〉 3, the rolled surface roughness increases rapidly with the increase in oil viscosity, whereas the surface roughening has already occurred when 2 〈 3, but the increase of the rolled surface roughness with increasing viscosity is not distinct.展开更多
A lubrication model was developed for explaining how to form an oil film inthe deformation zone, predicting the film thickness and determining the characteristics oflubrication in the strip rolling process, combined w...A lubrication model was developed for explaining how to form an oil film inthe deformation zone, predicting the film thickness and determining the characteristics oflubrication in the strip rolling process, combined with the knowledge of hydrodynamic lubricationand rolling theories. Various mineral oils with viscosities from 0.032 to 1.6 Pa-s were used toobtain different film thicknesses in the strip cold rolling. Results from the experiment andcalculation show that the oil film forming in hydrodynamic lubrication is up to the bit angle and ahigher rolling speed or a higher rolling oil viscosity. The mechanism of mechanical entrainmentalways affects the film thickness that increases with the rolling oil viscosity increasing or thereduction rate decreasing in rolling.展开更多
The monomer of phosphorylcholine derivative, O-(5-(2-methacryloxy)-3, 3-dimethyl-3-azapentyl)-O’-(ω-hydroxy-octyl)-phosphatequaternary ammonium salt, was designed and synthesized successfully. It was characteriz...The monomer of phosphorylcholine derivative, O-(5-(2-methacryloxy)-3, 3-dimethyl-3-azapentyl)-O’-(ω-hydroxy-octyl)-phosphatequaternary ammonium salt, was designed and synthesized successfully. It was characterized by the spectra ofHNMR and Mass spectra (ESI+), and every signal was assigned. Then the lubricating characteristics of the phosphorylcholinederivative were investigated on the tribological setup of ball-oh-flat. The Ultra-High Molecular Weight Polyethylene(UHMWPE) flat was rotated against a stainless steel ball with 6 mm diameter. The load was 2.3 N, which corresponded to amaximal Hertz contact pressure of 29 MPa. Water, phosphorylcholine derivative, and Acrylic Acid (AA) solution were used aslubricants, respectively. Compared with AA, the phosphorylcholine derivative shows significant lubrication. It can be stronglyhydrated under water due to the charged segment in chemical structure. The thick water layers within the chains serves asboundary lubricants, and this is thought to be the molecular origins of lubricating behavior.展开更多
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics...Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.展开更多
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat...With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.展开更多
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金Supported by the National Natural Science Foundation of China(50975141,51005118)~~
文摘To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.
基金Funded by Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202212905)Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxmX0453)。
文摘Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.
基金supported by the Major National Science and Technology Special Projects (Grant No. 2010ZX04014-052)the Fundamental Research Funds for the Central Universities of China
文摘The minimum quantity of lubrication(MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability.However,the effect of MQL parameters on machining is still not clear,which needs to be overcome.In this paper,the effect of different modes of lubrication,i.e.,conventional way using flushing,dry cutting and using the minimum quantity lubrication(MQL) technique on the machinability in end milling of a forged steel(50CrMnMo),is investigated.The influence of MQL parameters on tool wear and surface roughness is also discussed.MQL parameters include nozzle direction in relation to feed direction,nozzle elevation angle,distance from the nozzle tip to the cutting zone,lubricant flow rate and air pressure.The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions.Based on the investigations of chip morphology and color,MQL technique reduces the cutting temperature to some extent.The relative nozzle-feed position at 120°,the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values.This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way.Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure.Moreover,oil flow rate increased from 43.8 mL?h to 58.4 mL?h leads to a small decrease of flank wear,but it is not very significant.The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.
基金Project(51305331)supported by the National Natural Science Foundation of ChinaProject(2012M511993)supported by China Postdoctoral Science FoundationProject(TPL1202)supported by the Open Fund Program of the State Key Laboratory of Traction Power,Southwest Jiaotong University,China
文摘The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.
基金Project (2012M511993) supported by China Postdoctoral Science FoundationProject (TPL1202) supported by the Open Fund Program of the State Key Laboratory of Traction Power, Southwest Jiaotong University, China
文摘The friction and wear tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disk in a pin-on-disk tribometer system under PAO oil lubrication conditions. It was found that Nitinol 60 alloy can be lubricated well and has shown remarkable tribological performance. Average coefficient of friction (COF) of Nitinol 60 is 0.6 under dry friction; however, average COF decreases to 0.1 under PAO oil lubrication. SEM image of the worn surface shows that Nitinol 60 exhibits excellent wear resistance and the wear mechanism is mainly adhesive wear. Flow pattern of oil-air flow in oil pipe was simulated by FLUENT software with VOF model for acquiring working performance of oil-air lubrication. The optimum velocity of oil and air at the inlet was achieved, which provides the great proposal for the design of experiment of oil-air lubrication of Nitinol 60 alloy. The simulation results showed that the optimum annular flow of flow pattern was obtained when air velocity is 10 m/s and oil velocity is 0.05 m/s. The formation mechanism of annular flow was also discussed in the present study.
基金Supported by the National″111″Project(B07050)the China Postdoctoral Science Foundation(20100471634)~~
文摘The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently, the Jacobian matrices of the oil film forces are concisely obtained. The equilibrium position of the bearing with a given static load is found by the Newton-Raphson method. As byproducts, dynamic coefficients are obtained simultaneously without any extra computing time. From the numerical results, it is concluded that the effects of film temperature on stiffness coefficients are bigger than those on damping coefficients. With the increase of rotational speed, the load capacity and the stiffness coefficients of the journal bearing are increased when the eccentricity is small, while decreased when the eccentricity is big.
文摘Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation outcome are brought forward. As a dynamic simulating technique is introduced into the process of engine bearing design, simulation models of the oil film are built and the emulational analysis of the shaft center track is carried out. A software program package “Engine Bearing Friction and Lubrication Dynamic Simulation System” is developed to realize the real time simulation of the working status of bearing during the design process. Through developing virtualized products, the defects of the product design can be found in time and improve the products at once. Thus the purpose of predicting and controlling the cost, quality and design period of the products can be achieved.
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金Project (No. DEARS/CASR/R-01/2001/D-934 (30)) supported by Directorate of Advisory Extension and Research Services (DAERS), Committee for Advanced Studies & Research (CASR), BUET, Dhaka, Bangladesh
文摘In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.
文摘Die wall lubrication was applied on warm compaction powder metallurgy in hope to reduce the concentration level of the admixed lubricant since lubricant is harmful to the mechanical property of the sintered materials. Iron-based samples were prepared by die wall lubricated warm compaction at 135 ℃ and 175 ℃, using polytetrafluoroethylene (PTFE) emulsion as die wall lubricant. A compacting pressure of 700 MPa and 550 MPa were used. The admixed lubricant concentration ranging from 0 to 0.6 wt.% was used in this study. Compared with non-die wall lubricated samples, the die wall lubricated samples have higher green densities. Results show that in addition to the decrease in ejection forces, green density of the compacts increased linearly with the decrease in admixed lubricant content. Mechanical property of the sintered compacts increase sharply when the admixed lubricant concentration reduced to 0.125 wt.% or less. Ejection force data indicated that samples with die wall lubrication show lower ejection forces when compared with samples without die wall lubrication. No scoring was observed in all experiments even for samples contain no admixed lubricant. Our results indicated that under experimental condition used in this study, no matter at which compaction pressure, compaction temperature, graphite and lubricant contents in the powder the die wall lubricated warm compaction would give the highest green density and lowest ejection force. It can be concluded that combination of die wall lubrication and warm compaction can provide P/M products with higher density and better quality. It is a feasible way to produce high performance P/M parts if suitable die wall lubrication system was applied.
基金Supported by National Natural Science Foundation of China(Grant Nos.51806112,51975305)PhD Research Startup Foundation of Qingdao University of Technology,China(Grant Nos.JC2022-012,20312008).
文摘Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanoparticles improve not only the heat transfer capacity but also the lubrication performance.The physical and chemical proper-ties of nanofluid change when Al_(2)O_(3)nanoparticles are added.However,the effects of the concentration of nanofluid on lubrication performance remain unknown.Furthermore,the mechanisms of interaction between Al_(2)O_(3)nanoparti-cles and cottonseed oil are unclear.In this research,nanofluid is prepared by adding different mass concentrations of Al_(2)O_(3)nanoparticles(0,0.2%,0.5%,1%,1.5%,and 2%wt)to cottonseed oil during minimum quantity lubrication(MQL)milling 45 steel.The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters(milling force,specific energy)and micro-evaluation parameters(surface roughness,micro morphology,contact angle).The result show that the specific energy is at the minimum(114 J/mm^(3)),and the roughness value is the lowest(1.63μm)when the concentration is 0.5 wt%.The surfaces of the chip and workpiece are the smoothest,and the contact angle is the lowest,indicating that the tribological proper-ties are the best under 0.5 wt%.This research investigates the intercoupling mechanisms of Al_(2)O_(3)nanoparticles and cottonseed base oil,and acquires the optimal Al_(2)O_(3)nanofluid concentration to receive satisfactory tribological properties.
文摘The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.
文摘Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil.
文摘The effects of oil film on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were used to obtain different oil film thicknesses. Results from experiment and calculation show that the thicker oil film protects the initial roughening surface so that it leads to an increase in roughness of the rolled surface, in particular when the surface roughness has the character of direction. The rolled surface roughness was determined by 2, which is the ratio of oil film thickness to the combined surface roughness. When 2 〉 3, the rolled surface roughness increases rapidly with the increase in oil viscosity, whereas the surface roughening has already occurred when 2 〈 3, but the increase of the rolled surface roughness with increasing viscosity is not distinct.
文摘A lubrication model was developed for explaining how to form an oil film inthe deformation zone, predicting the film thickness and determining the characteristics oflubrication in the strip rolling process, combined with the knowledge of hydrodynamic lubricationand rolling theories. Various mineral oils with viscosities from 0.032 to 1.6 Pa-s were used toobtain different film thicknesses in the strip cold rolling. Results from the experiment andcalculation show that the oil film forming in hydrodynamic lubrication is up to the bit angle and ahigher rolling speed or a higher rolling oil viscosity. The mechanism of mechanical entrainmentalways affects the film thickness that increases with the rolling oil viscosity increasing or thereduction rate decreasing in rolling.
基金the National Natural Science Foundation of China(50975145)the High Technology Project of Jiangsu Province(BC20077046)for their financial support
文摘The monomer of phosphorylcholine derivative, O-(5-(2-methacryloxy)-3, 3-dimethyl-3-azapentyl)-O’-(ω-hydroxy-octyl)-phosphatequaternary ammonium salt, was designed and synthesized successfully. It was characterized by the spectra ofHNMR and Mass spectra (ESI+), and every signal was assigned. Then the lubricating characteristics of the phosphorylcholinederivative were investigated on the tribological setup of ball-oh-flat. The Ultra-High Molecular Weight Polyethylene(UHMWPE) flat was rotated against a stainless steel ball with 6 mm diameter. The load was 2.3 N, which corresponded to amaximal Hertz contact pressure of 29 MPa. Water, phosphorylcholine derivative, and Acrylic Acid (AA) solution were used aslubricants, respectively. Compared with AA, the phosphorylcholine derivative shows significant lubrication. It can be stronglyhydrated under water due to the charged segment in chemical structure. The thick water layers within the chains serves asboundary lubricants, and this is thought to be the molecular origins of lubricating behavior.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Key Project of Science and Technology Research of Hebei Province,China(ZD20131027)
文摘Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Hebei Provincial Key Project of Science and Technology Research of(ZD20131027)
文摘With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.