期刊文献+
共找到172,639篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction of lime utilization ratio of dephosphorization in BOF steelmaking based on online sequential extreme learning machine with forgetting mechanism
1
作者 Runhao Zhang Jian Yang +1 位作者 Han Sun Wenkui Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期508-517,共10页
The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me... The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction. 展开更多
关键词 basic oxygen furnace steelmaking machine learning lime utilization ratio DEPHOSPHORIZATION online sequential extreme learning machine forgetting mechanism
下载PDF
基于FSSA-ELM的模拟电路故障诊断方法 被引量:1
2
作者 陈晓娟 刘禹盟 +1 位作者 曲畅 张昭华 《半导体技术》 北大核心 2024年第1期77-84,共8页
在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电... 在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电路故障数据进行特征提取,通过分数阶与麻雀搜索算法(SSA)相融合,对极限学习机(ELM)的权重和阈值进行寻优,将提取后的特征数据输入到FSSA-ELM模型中进行训练和测试。T型反馈网络反相比例运算电路诊断实例表明,FSSA-ELM的故障诊断用时相较于SSA-ELM缩短了891 s,单故障诊断准确率可达972%,比SSA-ELM和ELM分别提高了19%和28%;双故障诊断准确率可达95%,分别提高了04%和10%。该故障诊断方法准确率高、耗时短,具有较强的模拟电路故障检测能力。 展开更多
关键词 模拟电路 故障诊断 分数维度 麻雀搜索算法(SSA) 极限学习机(elm)
下载PDF
基于PSO−ELM的综采工作面液压支架姿态监测方法
3
作者 李磊 许春雨 +5 位作者 宋建成 田慕琴 宋单阳 张杰 郝振杰 马锐 《工矿自动化》 CSCD 北大核心 2024年第8期14-19,共6页
针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液... 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.4208°减少到0.0580°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。 展开更多
关键词 液压支架 顶梁俯仰角 姿态监测 误差补偿 粒子群优化 极限学习机 PSO−elm
下载PDF
基于ELM的超声多特征融合螺栓应力测量方法
4
作者 陈平 商秋仙 +1 位作者 余鑫 尹爱军 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第4期46-56,共11页
针对传统超声波螺栓应力测量中存在的非线性和不适定性问题,提出一种基于极限学习机(ELM)的超声多特征融合螺栓应力测量方法。首先基于声弹性理论和散射理论,根据超声回波信号提取声时差及瑞利散射范围内多晶体材料中纵波的衰减系数等... 针对传统超声波螺栓应力测量中存在的非线性和不适定性问题,提出一种基于极限学习机(ELM)的超声多特征融合螺栓应力测量方法。首先基于声弹性理论和散射理论,根据超声回波信号提取声时差及瑞利散射范围内多晶体材料中纵波的衰减系数等超声波特征参数。然后通过向量降维选择声时差、衰减系数和有效受力长度作为模型输入特征向量,建立了基于ELM的超声多特征融合螺栓应力测量模型。搭建螺栓轴向应力超声波测量实验平台,对不同材料和规格的螺栓进行螺栓应力的测量,并对比了使用传统的超声测量方法的测量结果,验证了传统超声检测方法的局限性。对比了ELM与其他机器学习方法包括BP、支持向量回归(SVR)的测量结果和精度。结果表明,提出的方法有效克服了传统超声测量方法的不足,能实现不同材料不同规格的螺栓应力测量,并且测量精度更高(平均相对误差为3.86%),泛化能力更好。 展开更多
关键词 螺栓应力 超声波测量 向量降维 elm 多特征融合
下载PDF
基于特征选择和ELM神经网络的轴承可靠性预测
5
作者 高淑芝 陈国庆 +1 位作者 张义民 陈一丹 《机械设计与制造》 北大核心 2024年第8期170-173,共4页
针对滚动轴承可靠性预测问题,提出了基于特征选择和ELM网络的可靠性预测方法。首先,对振动信号提取特征,构成特征参数初选集;其次,引入单调性、相关性、鲁棒性三个特征评价指标对特征参数初选集进行特征评价,并定义了一种新的限制性指标... 针对滚动轴承可靠性预测问题,提出了基于特征选择和ELM网络的可靠性预测方法。首先,对振动信号提取特征,构成特征参数初选集;其次,引入单调性、相关性、鲁棒性三个特征评价指标对特征参数初选集进行特征评价,并定义了一种新的限制性指标,得到可以反映轴承退化过程的参数,构成退化特征参数集;再次,对退化特征参数集进行维数约简,构成低维特征向量集;最后,以退化特征参数集和特征向量集分别为输入数据和标签带入ELM网络中做可靠性预测。通过西安交通大学轴承振动信号数据集证明了该方法的有效性。 展开更多
关键词 特征评价指标 特征选择 elm神经网络 可靠性预测
下载PDF
一种基于PSO-ELM的低渗透砂岩水淹层测井识别方法
6
作者 杨波 黄长兵 +2 位作者 何岩 李垚银 李路路 《断块油气田》 CAS CSCD 北大核心 2024年第4期645-651,共7页
水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应... 水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应特征分析基础上,提出了一种利用改进粒子群优化算法(Particle Swarm Optimization,PSO)及极限学习机(Extreme Learning Machine,ELM)的水淹层识别方法。首先,利用相关系数优选6个主控因素:RD,RS,GR,SP,DEN,AC。其次,采用改进粒子群算法对极限学习机模型进行参数寻优;最后,利用优化后的模型对研究区水淹层进行预测。结果表明,利用PSO-ELM模型识别水淹层,识别符合率达到91.7%,应用效果优于ELM模型及传统识别图版,为水淹层测井识别提供了新思路。 展开更多
关键词 相关系数 粒子群优化算法 极限学习机 水淹层识别
下载PDF
基于EEMD-SVM-ELM模型的月降水量预测研究
7
作者 李明 刘东岳 +1 位作者 赵良伟 蒋一波 《水电能源科学》 北大核心 2024年第5期19-23,共5页
针对地表降水量数据的非线性、非平稳特征,首先利用EEMD对月降水量初始数据进行分解,再利用Lempel-Ziv复杂度算法将分量划分为高频及低频分量,使用粒子群算法(PSO)优化基学习器参数,最终构建EEMD-SVR-ELM月降水量预测模型,并采用该模型... 针对地表降水量数据的非线性、非平稳特征,首先利用EEMD对月降水量初始数据进行分解,再利用Lempel-Ziv复杂度算法将分量划分为高频及低频分量,使用粒子群算法(PSO)优化基学习器参数,最终构建EEMD-SVR-ELM月降水量预测模型,并采用该模型对长江下游部分城市的月降水量实际数据进行预测。结果表明,该模型的综合性能最优,具有更高的精确度。相较于单一模型,在M_(MAE)、R_(RMSE)、M_(MAPE)指标上分别降低了37.4%、41.4%、42.5%,DM检验表明该模型显著优于其他模型,说明该模型可作为月降水量预测的一种有效新方法。 展开更多
关键词 月降水量预测 经验模态分解 极限学习机 支持向量回归
下载PDF
基于DBO-ELM的污水处理过程软测量建模
8
作者 杜先君 姚艳平 钱强 《舰船电子工程》 2024年第7期103-107,共5页
针对污水处理过程中出水生化需氧量(Biochemical Oxygen Demand,BOD)等水质参数受其它环境因素的影响较大,难以建立准确测量模型等的问题,提出一种基于改进蜣螂算法(Improved Dung Beetle Optimizer,IDBO)优化极限学习机(Extreme Learni... 针对污水处理过程中出水生化需氧量(Biochemical Oxygen Demand,BOD)等水质参数受其它环境因素的影响较大,难以建立准确测量模型等的问题,提出一种基于改进蜣螂算法(Improved Dung Beetle Optimizer,IDBO)优化极限学习机(Extreme Learning Machine,ELM)的方法对污水出水BOD浓度进行预测。首先,选用随机森林算法(Random Forest Algo-rithm,RFA)对筛选出与BOD相关性较高的因子作为软测量模型的输入变量;其次,引入Tent混沌映射增加DBO算法的种群多样性等问题,利用IDBO算法来优化确定ELM权值分配,以提高ELM网络的预测精度;最后,将设计的IDBO-ELM软测量模型应用于污水处理仿真平台中,并与不同预测模型进行对比。结果表明:论文所设计的IDBO-ELM预测模型得到更高的预测精度和更稳定的网络结构。 展开更多
关键词 软测量模型 elm 特征选择 IDBO RFA
下载PDF
基于RCMFME和AO-ELM的齿轮箱损伤识别策略
9
作者 沈羽 赵旭 《机电工程》 CAS 北大核心 2024年第2期226-235,共10页
针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊... 针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊熵的基础上,对矢量的构造方式进行了改进,提出了能够同时考虑时间序列局部特征和全局特征的RCMFME方法;随后,利用RCMFME指标提取了齿轮箱振动信号的熵值,组建了故障特征向量;接着,利用AO算法对极限学习机的参数进行了自适应搜索,生成了参数最优的多类别分类器;最后,将训练样本的故障特征向量输入至AO-ELM分类模型中进行了模型训练,以构造性能最优的分类器,并实现了对齿轮箱测试样本的故障识别目的;利用两种齿轮箱振动数据集进行了实验,在识别准确率和识别稳定性方面,与相关的特征提取方法进行了对比。研究结果表明:采用基于RCMFME和AO-ELM的故障诊断方法能够分别取得100%和98%的分类准确率,平均识别准确率分别达到了100%和98%,优于精细复合多尺度全局模糊熵(RCMGFE)、精细复合多尺度模糊熵(RCMFE)、精细复合多尺度样本熵(RCMSE)。该方法具有显著的应用潜力。 展开更多
关键词 齿轮箱故障诊断 精细复合多尺度模糊测度熵 天鹰优化器 极限学习机 AO-elm分类模型 特征提取
下载PDF
基于卡尔曼滤波的小波去噪和IWOA-ELM的颈肩肌肉疲劳分类方法
10
作者 隋修武 付世雄 +2 位作者 刘金雨 王涛 刘阳 《电子测量技术》 北大核心 2024年第10期10-18,共9页
针对采集的表面肌电信号噪声干扰多,以及缺少颈肩肌肉疲劳状态划分标准和分类模型的问题,本文提出了一种基于联合去噪和优化极限学习机的颈肩肌肉疲劳分类方法。首先,使用AnyBody建立颈肩骨骼肌肉生物力学模型,根据肌肉pH值和RPE劳累感... 针对采集的表面肌电信号噪声干扰多,以及缺少颈肩肌肉疲劳状态划分标准和分类模型的问题,本文提出了一种基于联合去噪和优化极限学习机的颈肩肌肉疲劳分类方法。首先,使用AnyBody建立颈肩骨骼肌肉生物力学模型,根据肌肉pH值和RPE劳累感知量表划分肌肉疲劳状态。采集6名健康青年人斜方肌上束疲劳状态下的表面肌电信号。然后,结合卡尔曼滤波和改进的小波阈值函数进行联合去噪,提取均方根、积分肌电值、平均功率频率、中值频率、瞬时平均频率、瞬时中值频率6个特征参数。最后,使用改进鲸鱼优化算法优化极限学习机的权值和阈值,建立IWOA-ELM颈肩肌肉疲劳分类模型。实验结果表明,联合去噪算法效果更佳,IWOA-ELM模型训练集准确率为96.3%,测试集准确率为97.5%,均方根误差为1.108,对于不同受试者分类模型准确率均高于95%,因此本文提出的联合去噪算法和IWOA-ELM模型在颈肩肌肉疲劳分类方面具有优势。 展开更多
关键词 表面肌电信号 颈肩肌肉疲劳 卡尔曼滤波 小波阈值函数 鲸鱼优化算法 极限学习机算法
下载PDF
基于ELM神经网络的高速公路隧道运营风险评估模型
11
作者 李然 朱本成 +1 位作者 郭云鹏 李凯伦 《交通运输研究》 2024年第1期36-44,共9页
为克服传统高速公路隧道运营安全风险评估方法计算过程繁琐、运算效率低及泛化能力差等问题,采用极限学习机(Extreme Learning Machine,ELM)神经网络模型对高速公路隧道运营风险进行评估。首先,基于系统工程理论,分析了高速公路隧道运... 为克服传统高速公路隧道运营安全风险评估方法计算过程繁琐、运算效率低及泛化能力差等问题,采用极限学习机(Extreme Learning Machine,ELM)神经网络模型对高速公路隧道运营风险进行评估。首先,基于系统工程理论,分析了高速公路隧道运营风险影响因素,构建了运营风险评估指标体系。然后,以全国126个隧道典型运营事故数据为样本集,基于ELM神经网络算法,对比不同激活函数模型的分类准确率和测试时间指标,选定Sigmoid作为激活函数,训练得到高速公路隧道运营风险评估模型。最后,以该模型为核心算法开发了隧道运营风险评估系统,并依托广东省某高速公路隧道路段开展了工程应用。结果表明,所构建的风险评估模型简化了人工计算过程,可提升高速公路隧道运营风险评估的及时性和有效性。 展开更多
关键词 交通工程 隧道运营安全 极限学习机 风险评估 风险管控
下载PDF
健康科普短视频构成要素及传播机制研究——基于“ELM模型”理论分析
12
作者 蒙胜军 程佳仪 《东南传播》 2024年第8期116-119,共4页
健康科普短视频对于人民的健康生活至关重要,对其构成要素及传播逻辑探究,有利于促进健康科普类视频的发展,推动实现健康中国2030战略。本研究通过QCA方法、基于ELM理论将健康科普短视频构成要素分为“中心路径”和“边缘路径”进行量... 健康科普短视频对于人民的健康生活至关重要,对其构成要素及传播逻辑探究,有利于促进健康科普类视频的发展,推动实现健康中国2030战略。本研究通过QCA方法、基于ELM理论将健康科普短视频构成要素分为“中心路径”和“边缘路径”进行量化分析。研究发现公共诠释和传播主体是健康科普类短视频获得优质传播效果的关键因子,同时揭示出两种条件组合路径。本研究认为呈现内容与形式应该根据不同生产主体进行选择,而视频时长应根据传播内容进行调整以及公共诠释需与传播内容紧密相连。 展开更多
关键词 健康科普短视频 elm模型 传播机制 QCA
下载PDF
基于KPCA-PSO-ELM算法的地表水化学需氧量紫外-可见吸收光谱检测研究 被引量:1
13
作者 郑培超 周椿棪 +5 位作者 王金梅 尹义同 张莉 吕强 曾金锐 何雨欣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期707-713,共7页
化学需氧量(COD)是水质检测重要指标之一,反映水体有机物含量。传统的COD化学检测方法存在操作繁琐,等待时间长,二次污染等缺点。紫外-可见吸收光谱法是目前水体化学需氧量检测中应用最为广泛的方法之一,具有检测快速、无污染等特点。... 化学需氧量(COD)是水质检测重要指标之一,反映水体有机物含量。传统的COD化学检测方法存在操作繁琐,等待时间长,二次污染等缺点。紫外-可见吸收光谱法是目前水体化学需氧量检测中应用最为广泛的方法之一,具有检测快速、无污染等特点。为了满足地表水化学需氧量快速、实时、在线监测等要求,采用紫外-可见吸收光谱进行测量,提出了内核主成分分析(KPCA)结合粒子群优化极限学习机(PSO-ELM)预测模型,满足当前对地表水化学需氧量快速、实时监测的要求。对光谱进行Savitzky-Golay(SG)滤波以降低随机噪声的影响;用积分光谱代替原光谱,以降低信号波动带来的影响;再将得到的光谱信息归一化,消除不同光谱数据量纲的影响。将预处理后的数据利用KPCA算法将全光谱数据压缩为5个特征,有效解决光谱信息冗余的问题;采用PSO算法对ELM的权重和偏置进行优化极大提高了模型的精度。对217个河流、长江及支流、湖库等地表水样本按照7∶3随机划分成训练集和测试集,并进行建模测试,其中训练集拟合优度(R2)为0.930 2、均方根误差(RMSE)为0.363 0 mg·L^(-1)、测试集拟合优度R2为0.931 9、均方根误差(RMSE)为0.400 7 mg·L^(-1)。为了验证提出的基于KPCA全光谱数据压缩方法对预测模型的提升效果,分别对比了主成分分析(PCA)、连续投影算法(SPA)、套索回归(LASSO)等特征处理算法。PCA-PSO-ELM模型的RMSE为0.715 1 mg·L^(-1)、 SPA-PSO-ELM模型的RMSE为0.473 7 mg·L^(-1)、 LASSO-PSO-ELM模型的RMSE为0.412 6 mg·L^(-1), KPCA-PSO-ELM模型较上述三种模型,RMSE分别降低了78.46%、 18.22%、 2.97%,结果表明KPCA是一种高效的光谱降维算法,能够有效消除光谱冗余信息,提升模型预测精度。基于KPCA-PSO-ELM预测模型结合紫外-可见吸收光谱可以实现对地表水COD快速、实时检测,为在线COD检测场景提供方法支撑。 展开更多
关键词 化学需氧量 紫外-可见吸收光谱 内核主成分分析 极限学习机
下载PDF
基于K-means++与ELM的短期风电功率预测模型研究 被引量:1
14
作者 陈天阳 钱政 +1 位作者 荆博 韩妙荃 《电测与仪表》 北大核心 2024年第6期45-50,共6页
风能的波动性对风电产业的迅速发展带来了巨大挑战,准确可靠的短期风电功率预测对满足电网调度以及降低度电成本具有重要意义。文中提出了一种基于K-means++聚类分析和极限学习机ELM的短期风电功率预测方法,同时使用数值天气预报(NWP)... 风能的波动性对风电产业的迅速发展带来了巨大挑战,准确可靠的短期风电功率预测对满足电网调度以及降低度电成本具有重要意义。文中提出了一种基于K-means++聚类分析和极限学习机ELM的短期风电功率预测方法,同时使用数值天气预报(NWP)数据与SCADA系统的历史监测数据,实现了对未来72 h的短期风电功率预测。文中通过K-means++聚类算法将NWP数据划分为数量不等的簇,使用ELM对每个簇的数据分别建立NWP数据与SCADA功率数据间的映射模型。完成模型训练后,根据数据与各聚类中心点之间的距离选择最佳预测模型。实验结果表明,与常用的经典模型相比,其预测结果精度更高,具有更高的预测性能。 展开更多
关键词 K-means++聚类 elm 短期 功率预测 NWP
下载PDF
State of the art in applications of machine learning in steelmaking process modeling 被引量:6
15
作者 Runhao Zhang Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2055-2075,共21页
With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning te... With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models. 展开更多
关键词 machine learning steelmaking process modeling artificial neural network support vector machine case-based reasoning data processing
下载PDF
基于SSA-ELM神经网络控制器的光伏MPPT方法 被引量:2
16
作者 李文娟 徐伟健 +1 位作者 肖瀚 梁树威 《实验技术与管理》 CAS 北大核心 2024年第1期158-164,共7页
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该... 光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。 展开更多
关键词 光伏电池 最大功率点跟踪 麻雀搜索算法 极限学习机
下载PDF
基于PSO-ELM的地震死亡人员评估方法研究 被引量:1
17
作者 赵煜 韩旭昊 +2 位作者 孙艳萍 史一彤 陈文凯 《地震工程学报》 CSCD 北大核心 2024年第3期742-750,共9页
地震灾害人员伤亡快速评估对于地震应急响应至关重要。区域地理环境、人口密度和建筑结构等多种因素对地震人员伤亡具有重要影响,文章针对中国内地按照分区开展地震死亡人员评估方法研究。为充分考虑地震对不同地区造成的差异性影响,根... 地震灾害人员伤亡快速评估对于地震应急响应至关重要。区域地理环境、人口密度和建筑结构等多种因素对地震人员伤亡具有重要影响,文章针对中国内地按照分区开展地震死亡人员评估方法研究。为充分考虑地震对不同地区造成的差异性影响,根据人口密度、地理环境、建筑结构等情况,将中国大陆划分为西北、西南和东部三个区域,并按地震最大烈度对样本进行分类;然后采用随机森林方法和自助采样法,根据每个特征的重要性排序选取震级、震区面积和人口密度三参数,建立粒子群优化极限学习机(PSO-ELM)地震人员死亡评估模型。研究结果表明,模型在预测性能方面表现良好,在不同地区和烈度下具有较好的适用性和泛化性,能够为地震应急响应和地震灾害风险评估提供重要技术支撑。 展开更多
关键词 地震人员伤亡 评估模型 PSO-elm
下载PDF
基于PCA-PSO-ELM模型预测地震死亡人数研究 被引量:1
18
作者 陈韶金 刘子维 +2 位作者 周浩 江颖 翟笃林 《大地测量与地球动力学》 CSCD 北大核心 2024年第1期105-110,共6页
筛选42个历史地震震例,对地震震级、震源深度、震中烈度、抗震设防烈度、震中烈度与抗震设防烈度之差(ΔL)、人口密度以及发震时刻7个影响指标进行主成分分析(principal components analysis,PCA),构建粒子群优化(particle swarm optimi... 筛选42个历史地震震例,对地震震级、震源深度、震中烈度、抗震设防烈度、震中烈度与抗震设防烈度之差(ΔL)、人口密度以及发震时刻7个影响指标进行主成分分析(principal components analysis,PCA),构建粒子群优化(particle swarm optimization,PSO)极限学习机(extreme learning machine,ELM)地震死亡人数预测模型。将37个震例数据进行预处理和训练,并使用5个震例数据来检验模型的预测精度。实验结果表明,该PCA-PSO-ELM组合模型的平均误差率为10.87%,相比于PCA-ELM模型和ELM模型,其平均误差率分别降低8.70个百分点和18.38个百分点。因此,采用PCA-PSO-ELM组合模型预测地震死亡人数具有一定的可行性。 展开更多
关键词 地震死亡人数预测 主成分分析 粒子群优化 极限学习机 震后评估
下载PDF
基于CCA-ELM模型的国产LNG出厂价格中短期预测研究——以陕西省为例
19
作者 潘凯 谢翔 +7 位作者 张曦 刘定智 张晗 张元涛 邓钰暄 贺美 李慧慧 孙仁金 《国际石油经济》 2024年第7期99-106,共8页
考虑供需基本面因素和非基本面因素,构建CCA-ELM模型用于国产LNG出厂价格的预测。供需基本面因素包括LNG的产量、销量、库存、气温以及原料气成本,非基本面影响因素包括原油、汽油、柴油、煤炭等替代能源价格与东北亚天然气现货价格。... 考虑供需基本面因素和非基本面因素,构建CCA-ELM模型用于国产LNG出厂价格的预测。供需基本面因素包括LNG的产量、销量、库存、气温以及原料气成本,非基本面影响因素包括原油、汽油、柴油、煤炭等替代能源价格与东北亚天然气现货价格。通过典型相关性分析,研究各个影响因素对价格的作用程度。以10个影响因素的周度数据为研究对象,以LNG出厂价格的历史序列与其影响因素构建CCA-ELM神经网络预测模型。10个影响因素整体与LNG出厂价格的相关性较强,中国LNG出厂价格受能源市场的影响程度较高,受供需基本面的影响程度较低。兼顾LNG出厂价格历史数据与影响因素的CCA-ELM模型有效改进了时间序列神经网络的预测方法,提高了预测精度。 展开更多
关键词 LNG出厂价格 影响因素 elm神经网络 典型相关分析
下载PDF
基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断方法
20
作者 王艳 王寅初 +3 位作者 赵洪山 李伟 连洪钵 康磊 《电力自动化设备》 EI CSCD 北大核心 2024年第9期205-211,218,共8页
为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题... 为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题,引入基于正弦优化的改进麻雀搜索算法(ISSA)优化相关参数,提高基分类器的分类性能。使用改进的自适应增强(AdaBoost.M2)算法构建集成学习模型,扩展基分类器的输出,并引入伪损失函数替代传统AdaBoost算法中的加权误差,以增强集成分类器综合表达能力,得到基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断模型,进一步提高模型识别精度。通过909组油中溶解气体分析(DGA)样本对所提方法进行实例分析,结果表明该方法具有较好的诊断精度和分类性能,能够实现电力变压器故障类型的准确识别。 展开更多
关键词 电力变压器 故障诊断 集成学习 智能优化算法 极限学习机
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部