By means of scanning electron microscopy(SEM), energy dispersive spectrum(EDS), X-ray diffractometry(XRD) and metallographic analysis, the effects of variation of magnesium content on phase constituents of Al-Mg-Si-Cu...By means of scanning electron microscopy(SEM), energy dispersive spectrum(EDS), X-ray diffractometry(XRD) and metallographic analysis, the effects of variation of magnesium content on phase constituents of Al-Mg-Si-Cu alloys were investigated. The results indicate that the constituents formed during casting alloys are main Al1.9CuMg4.1Si3.3,Al4(MnFe)3Si2 and Mg2Si, while pure Si is only present in the alloy containing lower magnesium content. Increasing Mg content leads to increasing the amount of Mg2Si, but decreasing the amount of Al1.9CuMg4.1Si3.3 and Al4(MnFe)3Si2. During the following homogenization process, Al1.9CuMg4.1Si3.3 is completely dissolved, Al4(MnFe)3Si2 and pure Si remain unchanged. After rolling and final heat treatment, the constituents in the alloys change no longer.展开更多
The influence of AI content on the Mg-AI alloys corrosion performance during sodium chloride induced atmospheric corrosion has been studied. It was found that the corrosion rate of three Mg-AI alloys was accelerated w...The influence of AI content on the Mg-AI alloys corrosion performance during sodium chloride induced atmospheric corrosion has been studied. It was found that the corrosion rate of three Mg-AI alloys was accelerated with increasing AI content. The poor corrosion resistance was attributed to the galvanic coupling between the phase and eutectic phase or α phase and the formation of porous corrosion products.展开更多
This standard specifies the method summary, reagents, apparatus, sampling, procedure, test results calculation and permissible tolerance of the determination of magnesium oxide by CyDTA volumetric method.
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid st...Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.展开更多
The content and kind of trace elements in magnesium alloys have important effects on their ascast and semi-solid microstructures. In this research work, effects of trace Cr on as-cast and semi-solid microstructures of...The content and kind of trace elements in magnesium alloys have important effects on their ascast and semi-solid microstructures. In this research work, effects of trace Cr on as-cast and semi-solid microstructures of ZC61 magnesium alloy were investigated by metal mold casting and semi-solid isothermal heat treatment. The results show that the addition of Cr can refine the α-Mg phase without generating a new phase, noticeably change the eutectic phase, and decrease the average size of solid particles at the same isothermal heat treatment conditions. Non-dendritic microstructures of all alloys are constituted of α_1-Mg phases, α_2-Mg phases and eutectic phases after water quenching. With isothermal temperature increased or holding time prolonged, the eutectic microstructure(α-Mg+MgZn_2+CuMgZn) at the grain boundaries in as-cast alloy is melted preferentially and then turned into semi-solid non-dendritic microstructure by processes of initial coarsening, microstructure separation, spheroidizing and final coarsening. Especially when the ZC61-0.1 Cr alloy was treated at 585 ℃ for 30 min, the ideal non-dendritic microstructure can be obtained, and the corresponding solid particle size and shape factor were 37.5 μm and 1.33, respectively. The coarsening process of solid α-Mg phase at higher temperature or longer time, which is affected by both combining growth and Ostwald ripening mechanism, is refrained when Cr is added to the ZC61 alloy.展开更多
Overuse of N in lettuce production can lead to environmental problems caused by leaching and the accumulation of harmful nitrates in edible tissues. This study investigated the effect of applied nitrogen (N) concentra...Overuse of N in lettuce production can lead to environmental problems caused by leaching and the accumulation of harmful nitrates in edible tissues. This study investigated the effect of applied nitrogen (N) concentrations between 40 and 2400 mg·L–1 on growth, nitrate accumulation, mineral leaf content, and antioxidant capacity in Oak Leaf lettuce cv. “Shiraz” grown under hydroponic conditions in Australia. Yield (g FW) increased with nitrogen (N) application rate up to 1200 mg·L–1, as did leaf N content, while C:N declined. Nitrogen Utilization Efficiency (NUtE) increased rapidly from 40 to 75 mg·L–1 applied N, leveling at 150 mg·L–1 with no subsequent effect of N concentrations between 400 and 2400 mg·L–1. Nitrate content rose significantly with increased N, particularly at 1200 and 2400 mg·L–1. Leaf total plant phenolic content (TPP) and antioxidant capacity (measured by ferric reducing antioxidant power—FRAP) were both maximal at 75 and 400 mg·L–1 applied N, while highest oxygen radical absorption capacity (ORAC) values were found in leaves supplied with low N (40 to 400 mg·L–1). Applied N as calcium nitrate also significantly affected leaf mineral content as B, Mg, Mn, and Zn significantly decreased with increasing N. These results indicate that N applications of 1200 mg·L–1 or higher can result in reduced antioxidant capacity and mineral content in lettuce leaves.展开更多
Magnesium oxide in spheroidiser is harmful to the production of ductile iron for decreasing active magnesium content. To obtain quality ductile iron, the effects of magnesium oxide content in spheroidisers on spheroid...Magnesium oxide in spheroidiser is harmful to the production of ductile iron for decreasing active magnesium content. To obtain quality ductile iron, the effects of magnesium oxide content in spheroidisers on spheroidising treatment, microstrucure and properties of ductile iron were researched, and the critical magnesium oxide in spheroidisers was determined.展开更多
The equations of hydrogen solubility in pure magnesium and its alloy were deduced based on thermodynamic analysis: for pure magnesium, lgc(H)=0.51g p(H3)-1 332/T+0.568; for AZ91 alloy, lgc(H)=0.51g p(H2)-1 332/T+0.483...The equations of hydrogen solubility in pure magnesium and its alloy were deduced based on thermodynamic analysis: for pure magnesium, lgc(H)=0.51g p(H3)-1 332/T+0.568; for AZ91 alloy, lgc(H)=0.51g p(H2)-1 332/T+0.483. Based on the above equations, a rapid and reliable measurement system for hydrogen content in magnesium melt was set up with CPU controller and electric circuit. With this instrument, measurement experiments were carried out to determine hydrogen content in AZ91 melt. The results show that the actual hydrogen level of AZ91 melt under gas protection varies from 0.06 mL/g to 0.14 mL/g at the temperature range from 650℃to 750℃, and hydrogen content lineally increases with the increase of temperature.展开更多
基金Project(2002AA331050) supported by Hi-tech Research and Development Program of China project(0208) supported by Science and Technology Research of Ministry of Education of China
文摘By means of scanning electron microscopy(SEM), energy dispersive spectrum(EDS), X-ray diffractometry(XRD) and metallographic analysis, the effects of variation of magnesium content on phase constituents of Al-Mg-Si-Cu alloys were investigated. The results indicate that the constituents formed during casting alloys are main Al1.9CuMg4.1Si3.3,Al4(MnFe)3Si2 and Mg2Si, while pure Si is only present in the alloy containing lower magnesium content. Increasing Mg content leads to increasing the amount of Mg2Si, but decreasing the amount of Al1.9CuMg4.1Si3.3 and Al4(MnFe)3Si2. During the following homogenization process, Al1.9CuMg4.1Si3.3 is completely dissolved, Al4(MnFe)3Si2 and pure Si remain unchanged. After rolling and final heat treatment, the constituents in the alloys change no longer.
基金support by the National Natural ScienceFoundation of China (Grant No. 50571105) is acknowl-edged.
文摘The influence of AI content on the Mg-AI alloys corrosion performance during sodium chloride induced atmospheric corrosion has been studied. It was found that the corrosion rate of three Mg-AI alloys was accelerated with increasing AI content. The poor corrosion resistance was attributed to the galvanic coupling between the phase and eutectic phase or α phase and the formation of porous corrosion products.
文摘This standard specifies the method summary, reagents, apparatus, sampling, procedure, test results calculation and permissible tolerance of the determination of magnesium oxide by CyDTA volumetric method.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-079A1)the National Science Foundation for Young Scientists of China (No. 51704021)+1 种基金the Joint Funds of National Natural Science Foundation of China (No. U1560203)supported by Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials
文摘Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.
基金financially supported by the National Natural Science Foundations of China(51464032)
文摘The content and kind of trace elements in magnesium alloys have important effects on their ascast and semi-solid microstructures. In this research work, effects of trace Cr on as-cast and semi-solid microstructures of ZC61 magnesium alloy were investigated by metal mold casting and semi-solid isothermal heat treatment. The results show that the addition of Cr can refine the α-Mg phase without generating a new phase, noticeably change the eutectic phase, and decrease the average size of solid particles at the same isothermal heat treatment conditions. Non-dendritic microstructures of all alloys are constituted of α_1-Mg phases, α_2-Mg phases and eutectic phases after water quenching. With isothermal temperature increased or holding time prolonged, the eutectic microstructure(α-Mg+MgZn_2+CuMgZn) at the grain boundaries in as-cast alloy is melted preferentially and then turned into semi-solid non-dendritic microstructure by processes of initial coarsening, microstructure separation, spheroidizing and final coarsening. Especially when the ZC61-0.1 Cr alloy was treated at 585 ℃ for 30 min, the ideal non-dendritic microstructure can be obtained, and the corresponding solid particle size and shape factor were 37.5 μm and 1.33, respectively. The coarsening process of solid α-Mg phase at higher temperature or longer time, which is affected by both combining growth and Ostwald ripening mechanism, is refrained when Cr is added to the ZC61 alloy.
文摘Overuse of N in lettuce production can lead to environmental problems caused by leaching and the accumulation of harmful nitrates in edible tissues. This study investigated the effect of applied nitrogen (N) concentrations between 40 and 2400 mg·L–1 on growth, nitrate accumulation, mineral leaf content, and antioxidant capacity in Oak Leaf lettuce cv. “Shiraz” grown under hydroponic conditions in Australia. Yield (g FW) increased with nitrogen (N) application rate up to 1200 mg·L–1, as did leaf N content, while C:N declined. Nitrogen Utilization Efficiency (NUtE) increased rapidly from 40 to 75 mg·L–1 applied N, leveling at 150 mg·L–1 with no subsequent effect of N concentrations between 400 and 2400 mg·L–1. Nitrate content rose significantly with increased N, particularly at 1200 and 2400 mg·L–1. Leaf total plant phenolic content (TPP) and antioxidant capacity (measured by ferric reducing antioxidant power—FRAP) were both maximal at 75 and 400 mg·L–1 applied N, while highest oxygen radical absorption capacity (ORAC) values were found in leaves supplied with low N (40 to 400 mg·L–1). Applied N as calcium nitrate also significantly affected leaf mineral content as B, Mg, Mn, and Zn significantly decreased with increasing N. These results indicate that N applications of 1200 mg·L–1 or higher can result in reduced antioxidant capacity and mineral content in lettuce leaves.
文摘Magnesium oxide in spheroidiser is harmful to the production of ductile iron for decreasing active magnesium content. To obtain quality ductile iron, the effects of magnesium oxide content in spheroidisers on spheroidising treatment, microstrucure and properties of ductile iron were researched, and the critical magnesium oxide in spheroidisers was determined.
文摘The equations of hydrogen solubility in pure magnesium and its alloy were deduced based on thermodynamic analysis: for pure magnesium, lgc(H)=0.51g p(H3)-1 332/T+0.568; for AZ91 alloy, lgc(H)=0.51g p(H2)-1 332/T+0.483. Based on the above equations, a rapid and reliable measurement system for hydrogen content in magnesium melt was set up with CPU controller and electric circuit. With this instrument, measurement experiments were carried out to determine hydrogen content in AZ91 melt. The results show that the actual hydrogen level of AZ91 melt under gas protection varies from 0.06 mL/g to 0.14 mL/g at the temperature range from 650℃to 750℃, and hydrogen content lineally increases with the increase of temperature.