“Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circ...“Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circularly polarized wave in the magnetized plasma sheath.We assume a double Gaussian model of electron density and an exponential attenuation model of magnetic field.The propagation characteristics of right-handed circularly polarized wave are analyzed by the observation of the reflected,transmitted and loss coefficient.The numerical results show that the propagation of right-handed circularly polarized wave in the magnetized plasma sheath varies for different incident angles,collision frequencies,non-uniform magnetic fields and non-uniform plasma densities.We notice that reducing the wave frequency can meet the propagation conditions of whistle mode in the weak magnetized plasma sheath.And the transmittance of whistle mode is less affected by the variation of the electron density and the collision frequency.It can be used as a communication window.展开更多
In the plasma sheath, there is a significant gradient in ion velocity, resulting in strong stress on ions treated as a fluid. This aspect has often been neglected in previous sheath studies. This study is based on the...In the plasma sheath, there is a significant gradient in ion velocity, resulting in strong stress on ions treated as a fluid. This aspect has often been neglected in previous sheath studies. This study is based on the Braginskii plasma transport theory and establishes a 1D3V sheath fluid model that takes into account the ion stress effect. Under the assumption that ions undergo both electric and diamagnetic drift in the presheath region, self-consistent boundary conditions,including the ion Bohm velocity, are derived based on the property of the Sagdeev pseudopotential.Furthermore, assuming that the electron velocity at the wall follows a truncated Maxwell distribution, the wall floating potential is calculated, leading to a more accurate sheath thickness estimation. The results show that ion stress significantly reduces the sheath thickness, enhances ion Bohm velocity, wall floating potential, and ion flux at the wall. It hinders the acceleration of ions within the sheath, leading to notable alterations in the particle density profiles within the sheath. Further research indicates that in ion stress, bulk viscous stress has the greatest impact on sheath properties.展开更多
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ...Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.展开更多
In this work,we aim to investigate the origin of the magnetic carriers in the lunar crust and the intensity of the ancient dynamo field.The magnetization and depth range of magnetic carriers are studied under a weak a...In this work,we aim to investigate the origin of the magnetic carriers in the lunar crust and the intensity of the ancient dynamo field.The magnetization and depth range of magnetic carriers are studied under a weak and a strong magnetic anomaly in Mare Tranquillitatis and in Oceanus Procellarum,respectively,where the surface ages are 3.6 and 3.3 billion years.A sophisticated three-dimensional amplitude inversion software program from a geophysical survey is used to reconstruct the distributions of magnetization in the lunar crust.Because no globally measured surface magnetic field exists for the Moon,a crustal magnetic anomaly model with a grid resolution of 0.2°is used.The depth range of the magnetic source is fixed by the boundary identified by a relative criterion,which is 20%of the recovered maximum magnetization.The central burial depths of the magnetic carriers are approximately 15 km and 25 km under Reiner Gamma and Mare Tranquillitatis,respectively.The volumes of the two magnetic sources are at scales of 104 and 105 km3,respectively.The aforementioned differences may imply a hotter crust under Reiner Gamma than Mare Tranquillitatis by 3.3 billion years.The results support the view that the magma intrusions magnetized by an ancient magnetic field could be the origin of magnetic anomalies under Reiner Gamma and Mare Tranquillitatis.Compared with previous works,the maximum magnetization of 3 A/m under Reiner Gamma supports the intensity of the field being several microteslas.展开更多
Boiling heat transfer,as an efficient heat transfer approach,that can absorb a large amount of latent heat during the vaporization,is especially suitable for heat transfer occasions with high heat flux demands.Experim...Boiling heat transfer,as an efficient heat transfer approach,that can absorb a large amount of latent heat during the vaporization,is especially suitable for heat transfer occasions with high heat flux demands.Experimental studies show that the surface tension coefficient of pure water can be reduced sharply(up to 25%)when it is magnetized by amagnetic field applied externally.In this paper,magnetized water(MW)was used as the work fluid to conduct boiling heat transfer experiments,to explore the influence of magnetization on the boiling characteristics of pure water.The electromagnetic device was used to magnetize water,and then the MW was used as the work-fluid of boiling heat transfer experiments,the bubble dynamic behavior of the MW boiling was captured by a video camera,and the characteristics andmechanism were analyzed.It was found that at the same conditions,the boiling of MW can produce more vapor bubbles of smaller size than the water without magnetization,which leads to a higher heat-transfer efficiency.This indicates that magnetization can enhance the boiling heat transfer of pure water.Furthermore,the thermal conditions required by magnetized water when the boiling is started are lower than the non-magnetized water boiling,whichmeans the earlier start of nucleate pool boiling when using the MW.展开更多
With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amyla...With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amylase ac- tivities of seeds significantly, which accelerated the transformation process of en- dosperm starch to soluble sugar, resulting in emergence of 36 hours in advance under low temperature condition. Germination rate and germination potential of magnetized water soaking were higher than the contrast by 6.7% and 10.0%, which helped cultivate vigorous seedling.展开更多
In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz force...In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz forces to achieve plastic deformation of sheet metal;according to the previous analysis, the results have shown that in most cases, the Lorentz force acting on the workpiece (metal) is not uniform, there are uneven axial deformations of the metal plates which prevent the rapid advancement of today’s technology. In this article, we presented some advanced analyzes which will lead us to improve the technical solution for the problems of non-uniform axial deformations of the metals in the traditional tube electromagnetic forming technology (EMF). A field shaper is used as a practical forming tool to influence the magnetic field and magnetic pressure distribution, thereby improving the forming ability and result during the electromagnetic forming (EMF) process and we see that induced eddy current control is realized by changing the structural parameters of the magnetic field shaper;which improves the strength and controllability of the magnetic force that acts on the workpiece;thereby a greater radial magnetic pressure can be achieved with field shaper than the case without it;the field shaper regulates the electromagnetic force, the distribution of the magnetic pressure decreases, and the uniform force area of the tube increases which effectively enhances the uniform range of the pipe electromagnetic bulging and the electromagnetic induction coupling between the coil and the metallic workpiece is generally required to produce the Lorentz forces. Using COMSOL Multiphysics® simulation software helped us to accurately represent the real world, simulating multiple physical effects that happened in this model during the process.展开更多
Tomato seeds (Lycopersicon esculentum L. Mill. cv. zhongshu No. 6) were treated by magnetized plasma before being sown to investigate its effect on the growth and yield of tomatoes. Biochemical analysis showed that ...Tomato seeds (Lycopersicon esculentum L. Mill. cv. zhongshu No. 6) were treated by magnetized plasma before being sown to investigate its effect on the growth and yield of tomatoes. Biochemical analysis showed that dehydrogenase activity increased with the increase of the current but decreased when the current was higher than 1.5 A. The activities of peroxidase (POD) isoenzyme changed in the same pattern. There was no difference in germination percentage between treatments and control, which were carried out in laboratory conditions. However, significant (c~ = 0.01) difference was observed in germination percentage in the pot experiment. In the pot experiment, the sprouting rate for the treatment with a 1.5 A current was 32.75%, whereas the untreated was only 4.75% on the eleventh day. Germination time is more than one day earlier than the control. The 1.5 A treatment increased the tomato yield by 20.7%.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.展开更多
We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel...We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.展开更多
For the magnetized fluidized bed(MFB)with the binary mixture of Geldart-B magnetizable and nonmagnetizable particles,the magnetically induced segregation between these two kinds of particles occurs at high magnetic fi...For the magnetized fluidized bed(MFB)with the binary mixture of Geldart-B magnetizable and nonmagnetizable particles,the magnetically induced segregation between these two kinds of particles occurs at high magnetic field intensities(H),leading to the deterioration of the fluidization quality.The critical intensity(H_(ms))above which such segregation commences varies with the gas velocity(U_g).This work focuses on establishing a segregation model to theoretically derive the H_(ms)–U_g relationship.In a magnetic field,the magnetizable particles form agglomerates.The magnetically induced segregation in essence refers to the size segregation of the binary mixture of agglomerates and nonmagnetizable particles.Consequently,the segregation model was established in two steps:first,the size of agglomerates(d_A)was calculated by the force balance model;then,the H_(ms)–U_g relationship was obtained by substituting the expression of d_Ainto the basic size segregation model for binary mixtures.As per the force balance model,the cohesive and collision forces were 1_2 orders of magnitude greater than the other forces exerted on the agglomerates.Therefore,the balance between these two forces largely determined d_A.The calculated d_A increased with increasing H and decreasing U_g,agreeing qualitatively with the experimental observation.The calculated H_(ms)–U_ g relationship agreed reasonably with the experimental data,indicating that the present segregation model could predict well the segregation behavior in the MFB with the binary mixture.展开更多
The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are invest...The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are investigated. A linear dispersion relation is obtained. The numerical results show that the external magnetized field, fast ions and nonadiabatic dust charge fluctuation have strong influence on the frequency and the damping of wave.展开更多
In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance betw...In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.展开更多
A wakefield driven by a short intense laser pulse in a perpendicularly magnetized underdense plasma is studied analytically and numerically for both weakly relativistic and highly relativistic situations. Owing to the...A wakefield driven by a short intense laser pulse in a perpendicularly magnetized underdense plasma is studied analytically and numerically for both weakly relativistic and highly relativistic situations. Owing to the DC magnetic field, a transverse component of the electric fields associated with the wakefield appears, while the longitudinal wave is not greatly affected by the magnetic field up to 22 Tesla. Moreover, the scaling law of the transverse field versus the longitudinal field is derived. One-dimensional particle-in-cell simulation results confirm the analytical results. Wakefield transmission through the plasma-vacuum boundary, where electromagnetic emission into vacuum occurs, is also investigated numerically. These results are useful for the generation of terahertz radiation and the diagnosis of laser wakefields.展开更多
In the presence of an applied uniform magnetic field Bo, the properties of 2-dimensional (2D) magnetosonic solitary waves of relativistic amplitude in the plasma containing electron, light ions He^+, and heavy ion...In the presence of an applied uniform magnetic field Bo, the properties of 2-dimensional (2D) magnetosonic solitary waves of relativistic amplitude in the plasma containing electron, light ions He^+, and heavy ions O+ are presented. In the weakly relativistic limit, a Kadomtsev Petviashvili (KP) equation is derived by reductive perturbation method. We give the N-soliton solution of the KP equation and find dromion solutions of a potential of the physical field. The interaction law of the dromions is obtained, which shows there is no exchange of energy, momentum, and angular momentum before and after interaction of the dromions except for phase shifts.展开更多
The secondary electron emission(SEE) and inclined magnetic field are typical features at the channel wall of the Hall thruster acceleration region(AR), and the characteristics of the magnetized sheath have a significa...The secondary electron emission(SEE) and inclined magnetic field are typical features at the channel wall of the Hall thruster acceleration region(AR), and the characteristics of the magnetized sheath have a significant effect on the radial potential distribution, ion radial acceleration and wall erosion. In this work, the magnetohydrodynamics model is used to study the characteristics of the magnetized sheath with SEE in the AR of Hall thruster. The electrons are assumed to obey non-extensive distribution, the ions and secondary electrons are magnetized.Based on the Sagdeev potential, the modified Bohm criterion is derived, and the influences of the non-extensive parameter and magnetic field on the AR sheath structure and parameters are discussed. Results show that, with the decrease of the parameter q, the high-energy electron leads to an increase of the potential drop in the sheath, and the sheath thickness expands accordingly,the kinetic energy rises when ions reach the wall, which can aggravate the wall erosion.Increasing the magnetic field inclination angle in the AR of the Hall thruster, the Lorenz force along the x direction acting as a resistance decelerating ions becomes larger which can reduce the wall erosion, while the strength of magnetic field in the AR has little effect on Bohm criterion and wall potential. The propellant type also has a certain effect on the values of wall potential,secondary electron number density and sheath thickness.展开更多
Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to it...Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to its high electron emission current. An indirectly heated oxide coated cathode plasma source has been constructed on a linear magnetized plasma device. The electron emission current density can reach 2 A/cm2 to 6 A/cm2 in pulsed mode within pulse length 5-20 ms. A 10 cm diameter, 2 m long plasma column with density 10is m-3 to 1019 m3 and electron temperature Te --~ 3-7 eV is produced. The spatial uniformity of the emission ability is less than 4% and the discharge reproducibility is better than 97%. With a wide range of the plasma parameters, this kind of plasma source provides great flexibility for many basic plasma investigations. The detail of construction and initial characterization of oxide coated cathode are described in this paper.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) b...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.展开更多
A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into ...A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.展开更多
A hydrodynamic model is used to investigate the characteristics of positive ions in the sheath region of a low-pressure magnetized electronegative discharge. Positive ions are modeled as a cold fluid, while the electr...A hydrodynamic model is used to investigate the characteristics of positive ions in the sheath region of a low-pressure magnetized electronegative discharge. Positive ions are modeled as a cold fluid, while the electron and negative ion density distributions obey the Boltzmann distribution with two different temperatures. By taking into account the ion-neutral collision effect in the sheath region and assuming that the momentum transfer cross section has a power law dependence on the velocity of positive ions, the sheath formation criterion (modified Bohm's criterion) is derived and it is shown that there are specified maximum and minimum limits for the ion Mach number M. Considering these two limits of M, the behaviors of electrostatic potential, charged particle density distributions and positive ion velocities in the sheath region are studied for different values of ion-neutral collision frequency.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275202,62371372,62101406,and 62001340)China Postdoctoral Science Foundation(Grant Nos.2022M71490 and 2020M673341)+1 种基金the Innovation Capability Support Program of Shaanxi Province,China(Grant No.2022TD-37)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2023JC-YB-549)。
文摘“Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circularly polarized wave in the magnetized plasma sheath.We assume a double Gaussian model of electron density and an exponential attenuation model of magnetic field.The propagation characteristics of right-handed circularly polarized wave are analyzed by the observation of the reflected,transmitted and loss coefficient.The numerical results show that the propagation of right-handed circularly polarized wave in the magnetized plasma sheath varies for different incident angles,collision frequencies,non-uniform magnetic fields and non-uniform plasma densities.We notice that reducing the wave frequency can meet the propagation conditions of whistle mode in the weak magnetized plasma sheath.And the transmittance of whistle mode is less affected by the variation of the electron density and the collision frequency.It can be used as a communication window.
基金supported by National Natural Science Foundation of China (Nos.11975062 and 11605021)the Fundamental Research Funds for the Central Universities (No.3132023192)。
文摘In the plasma sheath, there is a significant gradient in ion velocity, resulting in strong stress on ions treated as a fluid. This aspect has often been neglected in previous sheath studies. This study is based on the Braginskii plasma transport theory and establishes a 1D3V sheath fluid model that takes into account the ion stress effect. Under the assumption that ions undergo both electric and diamagnetic drift in the presheath region, self-consistent boundary conditions,including the ion Bohm velocity, are derived based on the property of the Sagdeev pseudopotential.Furthermore, assuming that the electron velocity at the wall follows a truncated Maxwell distribution, the wall floating potential is calculated, leading to a more accurate sheath thickness estimation. The results show that ion stress significantly reduces the sheath thickness, enhances ion Bohm velocity, wall floating potential, and ion flux at the wall. It hinders the acceleration of ions within the sheath, leading to notable alterations in the particle density profiles within the sheath. Further research indicates that in ion stress, bulk viscous stress has the greatest impact on sheath properties.
文摘Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.
基金supported by the National Key R&D Program of China (Grant No. 2021YFA0715101)supported by the Chinese 111 Project (Contract No. B20011)+1 种基金the Fundamental Research Funds for the Central Universitiessupported by the Innovation Experimental Class Program
文摘In this work,we aim to investigate the origin of the magnetic carriers in the lunar crust and the intensity of the ancient dynamo field.The magnetization and depth range of magnetic carriers are studied under a weak and a strong magnetic anomaly in Mare Tranquillitatis and in Oceanus Procellarum,respectively,where the surface ages are 3.6 and 3.3 billion years.A sophisticated three-dimensional amplitude inversion software program from a geophysical survey is used to reconstruct the distributions of magnetization in the lunar crust.Because no globally measured surface magnetic field exists for the Moon,a crustal magnetic anomaly model with a grid resolution of 0.2°is used.The depth range of the magnetic source is fixed by the boundary identified by a relative criterion,which is 20%of the recovered maximum magnetization.The central burial depths of the magnetic carriers are approximately 15 km and 25 km under Reiner Gamma and Mare Tranquillitatis,respectively.The volumes of the two magnetic sources are at scales of 104 and 105 km3,respectively.The aforementioned differences may imply a hotter crust under Reiner Gamma than Mare Tranquillitatis by 3.3 billion years.The results support the view that the magma intrusions magnetized by an ancient magnetic field could be the origin of magnetic anomalies under Reiner Gamma and Mare Tranquillitatis.Compared with previous works,the maximum magnetization of 3 A/m under Reiner Gamma supports the intensity of the field being several microteslas.
基金supported by theResearch Starting Programof Ludong University(Gran No.221/20220045).
文摘Boiling heat transfer,as an efficient heat transfer approach,that can absorb a large amount of latent heat during the vaporization,is especially suitable for heat transfer occasions with high heat flux demands.Experimental studies show that the surface tension coefficient of pure water can be reduced sharply(up to 25%)when it is magnetized by amagnetic field applied externally.In this paper,magnetized water(MW)was used as the work fluid to conduct boiling heat transfer experiments,to explore the influence of magnetization on the boiling characteristics of pure water.The electromagnetic device was used to magnetize water,and then the MW was used as the work-fluid of boiling heat transfer experiments,the bubble dynamic behavior of the MW boiling was captured by a video camera,and the characteristics andmechanism were analyzed.It was found that at the same conditions,the boiling of MW can produce more vapor bubbles of smaller size than the water without magnetization,which leads to a higher heat-transfer efficiency.This indicates that magnetization can enhance the boiling heat transfer of pure water.Furthermore,the thermal conditions required by magnetized water when the boiling is started are lower than the non-magnetized water boiling,whichmeans the earlier start of nucleate pool boiling when using the MW.
基金Supported by China Spark Program for Science and Technology(2011GA740072)Shandong Provincial Soft Scientific Research Project(2015RKC35001)Shandong Provincial Agricultural High-quality Seed Engineering(2016LZGC019)~~
文摘With Welsh Onion seeds employed as materials, effects of magnetized water on seed Germination were studied. The results showed the treatment of magnetized water soaking for 4 h promoted water absorption rate and amylase ac- tivities of seeds significantly, which accelerated the transformation process of en- dosperm starch to soluble sugar, resulting in emergence of 36 hours in advance under low temperature condition. Germination rate and germination potential of magnetized water soaking were higher than the contrast by 6.7% and 10.0%, which helped cultivate vigorous seedling.
文摘In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz forces to achieve plastic deformation of sheet metal;according to the previous analysis, the results have shown that in most cases, the Lorentz force acting on the workpiece (metal) is not uniform, there are uneven axial deformations of the metal plates which prevent the rapid advancement of today’s technology. In this article, we presented some advanced analyzes which will lead us to improve the technical solution for the problems of non-uniform axial deformations of the metals in the traditional tube electromagnetic forming technology (EMF). A field shaper is used as a practical forming tool to influence the magnetic field and magnetic pressure distribution, thereby improving the forming ability and result during the electromagnetic forming (EMF) process and we see that induced eddy current control is realized by changing the structural parameters of the magnetic field shaper;which improves the strength and controllability of the magnetic force that acts on the workpiece;thereby a greater radial magnetic pressure can be achieved with field shaper than the case without it;the field shaper regulates the electromagnetic force, the distribution of the magnetic pressure decreases, and the uniform force area of the tube increases which effectively enhances the uniform range of the pipe electromagnetic bulging and the electromagnetic induction coupling between the coil and the metallic workpiece is generally required to produce the Lorentz forces. Using COMSOL Multiphysics® simulation software helped us to accurately represent the real world, simulating multiple physical effects that happened in this model during the process.
基金National Natural Science Foundation of China (No. 5017700) and the Natural Science Foundation ofShanxi Province (No. 20051078)
文摘Tomato seeds (Lycopersicon esculentum L. Mill. cv. zhongshu No. 6) were treated by magnetized plasma before being sown to investigate its effect on the growth and yield of tomatoes. Biochemical analysis showed that dehydrogenase activity increased with the increase of the current but decreased when the current was higher than 1.5 A. The activities of peroxidase (POD) isoenzyme changed in the same pattern. There was no difference in germination percentage between treatments and control, which were carried out in laboratory conditions. However, significant (c~ = 0.01) difference was observed in germination percentage in the pot experiment. In the pot experiment, the sprouting rate for the treatment with a 1.5 A current was 32.75%, whereas the untreated was only 4.75% on the eleventh day. Germination time is more than one day earlier than the control. The 1.5 A treatment increased the tomato yield by 20.7%.
基金The project was supported by the National Natural Science Foundation of China (60471002) and the Jiangxi ProvincialNatural Science Foundation (0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41331067 and 41527804the Key Research Program of Frontier Sciences of Chinese Academy of Sciences under Grant No QYZDJ-SSW-DQC010the Fundamental Research Funds for the Central Universities
文摘We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.
基金Supported by the National Natural Science Foundation of China(21325628)the Major Research Plan of the National Natural Science Foundation of China(91334108)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(YZ201641)
文摘For the magnetized fluidized bed(MFB)with the binary mixture of Geldart-B magnetizable and nonmagnetizable particles,the magnetically induced segregation between these two kinds of particles occurs at high magnetic field intensities(H),leading to the deterioration of the fluidization quality.The critical intensity(H_(ms))above which such segregation commences varies with the gas velocity(U_g).This work focuses on establishing a segregation model to theoretically derive the H_(ms)–U_g relationship.In a magnetic field,the magnetizable particles form agglomerates.The magnetically induced segregation in essence refers to the size segregation of the binary mixture of agglomerates and nonmagnetizable particles.Consequently,the segregation model was established in two steps:first,the size of agglomerates(d_A)was calculated by the force balance model;then,the H_(ms)–U_g relationship was obtained by substituting the expression of d_Ainto the basic size segregation model for binary mixtures.As per the force balance model,the cohesive and collision forces were 1_2 orders of magnitude greater than the other forces exerted on the agglomerates.Therefore,the balance between these two forces largely determined d_A.The calculated d_A increased with increasing H and decreasing U_g,agreeing qualitatively with the experimental observation.The calculated H_(ms)–U_ g relationship agreed reasonably with the experimental data,indicating that the present segregation model could predict well the segregation behavior in the MFB with the binary mixture.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10475066 and 10347006).
文摘The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are investigated. A linear dispersion relation is obtained. The numerical results show that the external magnetized field, fast ions and nonadiabatic dust charge fluctuation have strong influence on the frequency and the damping of wave.
文摘In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.
基金supported in part by National Natural Science Foundation of China(Nos.10734130,10925421,11075105)the National Basic Research Program of China(Nos.2007CB310406,2009GB105002)
文摘A wakefield driven by a short intense laser pulse in a perpendicularly magnetized underdense plasma is studied analytically and numerically for both weakly relativistic and highly relativistic situations. Owing to the DC magnetic field, a transverse component of the electric fields associated with the wakefield appears, while the longitudinal wave is not greatly affected by the magnetic field up to 22 Tesla. Moreover, the scaling law of the transverse field versus the longitudinal field is derived. One-dimensional particle-in-cell simulation results confirm the analytical results. Wakefield transmission through the plasma-vacuum boundary, where electromagnetic emission into vacuum occurs, is also investigated numerically. These results are useful for the generation of terahertz radiation and the diagnosis of laser wakefields.
基金Supported by National Natural Science Foundation of China under Grant No. 10747109the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070008001
文摘In the presence of an applied uniform magnetic field Bo, the properties of 2-dimensional (2D) magnetosonic solitary waves of relativistic amplitude in the plasma containing electron, light ions He^+, and heavy ions O+ are presented. In the weakly relativistic limit, a Kadomtsev Petviashvili (KP) equation is derived by reductive perturbation method. We give the N-soliton solution of the KP equation and find dromion solutions of a potential of the physical field. The interaction law of the dromions is obtained, which shows there is no exchange of energy, momentum, and angular momentum before and after interaction of the dromions except for phase shifts.
基金supported by National Natural Science Foundation of China (Nos. 11975062, 11605021, 11975088)the China Postdoctoral Science Foundation (No. 2017M621120)。
文摘The secondary electron emission(SEE) and inclined magnetic field are typical features at the channel wall of the Hall thruster acceleration region(AR), and the characteristics of the magnetized sheath have a significant effect on the radial potential distribution, ion radial acceleration and wall erosion. In this work, the magnetohydrodynamics model is used to study the characteristics of the magnetized sheath with SEE in the AR of Hall thruster. The electrons are assumed to obey non-extensive distribution, the ions and secondary electrons are magnetized.Based on the Sagdeev potential, the modified Bohm criterion is derived, and the influences of the non-extensive parameter and magnetic field on the AR sheath structure and parameters are discussed. Results show that, with the decrease of the parameter q, the high-energy electron leads to an increase of the potential drop in the sheath, and the sheath thickness expands accordingly,the kinetic energy rises when ions reach the wall, which can aggravate the wall erosion.Increasing the magnetic field inclination angle in the AR of the Hall thruster, the Lorenz force along the x direction acting as a resistance decelerating ions becomes larger which can reduce the wall erosion, while the strength of magnetic field in the AR has little effect on Bohm criterion and wall potential. The propellant type also has a certain effect on the values of wall potential,secondary electron number density and sheath thickness.
基金supported by National Natural Science Foundation of China(No.11275200)
文摘Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to its high electron emission current. An indirectly heated oxide coated cathode plasma source has been constructed on a linear magnetized plasma device. The electron emission current density can reach 2 A/cm2 to 6 A/cm2 in pulsed mode within pulse length 5-20 ms. A 10 cm diameter, 2 m long plasma column with density 10is m-3 to 1019 m3 and electron temperature Te --~ 3-7 eV is produced. The spatial uniformity of the emission ability is less than 4% and the discharge reproducibility is better than 97%. With a wide range of the plasma parameters, this kind of plasma source provides great flexibility for many basic plasma investigations. The detail of construction and initial characterization of oxide coated cathode are described in this paper.
基金National Natural Science Foundation of China (No. 60471002) and the Natural Science Foundation ofJiangxi Province (No. 0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.
基金supported by National Natural Science Foundation of China(Nos.11105147,11375197 and 11175179)the Ministry of Education of China(No.IRT1190)
文摘A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.
文摘A hydrodynamic model is used to investigate the characteristics of positive ions in the sheath region of a low-pressure magnetized electronegative discharge. Positive ions are modeled as a cold fluid, while the electron and negative ion density distributions obey the Boltzmann distribution with two different temperatures. By taking into account the ion-neutral collision effect in the sheath region and assuming that the momentum transfer cross section has a power law dependence on the velocity of positive ions, the sheath formation criterion (modified Bohm's criterion) is derived and it is shown that there are specified maximum and minimum limits for the ion Mach number M. Considering these two limits of M, the behaviors of electrostatic potential, charged particle density distributions and positive ion velocities in the sheath region are studied for different values of ion-neutral collision frequency.