期刊文献+
共找到1,131篇文章
< 1 2 57 >
每页显示 20 50 100
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:2
1
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
Facile synthesis of Cu-doped manganese oxide octahedral molecular sieve for the efficient degradation of sulfamethoxazole via peroxymonosulfate activation 被引量:1
2
作者 Yuhua Qiu Yingping Huang +2 位作者 Yanlan Wang Xiang Liu Di Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2770-2780,共11页
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci... Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment. 展开更多
关键词 SULFAMETHOXAZOLE manganese oxide octahedral molecular sieve PEROXYMONOSULFATE sewage treatment COPPER
下载PDF
Preparation of Manganese Oxide and Its Adsorption Properties
3
作者 贺跃 王海峰 +4 位作者 YANG Pan WANG Song CHEN Xiaoliang YANG Chunyuan 王家伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1031-1040,共10页
The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of ... The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of different oxidants on the morphology,phase composition,surface properties and specific surface area of manganese oxides were investigated.The experimental results show that the diameter of manganese oxide particles prepared with H_(2)O_(2)is the smallest,about 50 nm,and the specific surface area is the largest,63.8764 m^(2)/g.It has the advantages of abundant surface hydroxyl groups,no introduction of other impurities and large adsorption potential.It is most suitable to be used as an oxidant for oxidizing manganese sulfate solution to prepare manganese oxide by in-situ oxidation.Nano manganese oxide prepard by H_(2)O_(2)in-situ oxidation method is used as adsorbent to adsorb cobalt and nickel impurities in manganese sulfate.When the reaction pH is 6,the reaction time is 30min and the amount of adsorbent is 1.0 g,the adsorption rates of cobalt and nickel impurities in 100ml manganese sulfate solution are 97.59%and 97.67%,respectively.The residual amounts of cobalt and nickel meet the industrial process standard of first-class products(Co,Ni w/%≤0.005)of high-purity manganese sulfate(Hg/t4823-2015)for batteries.The study plays a guiding role in the preparation and regulation of manganese oxide,and provides a new method with high efficiency,purity and adsorbent availability for the preparation of high-purity manganese sulfate solution. 展开更多
关键词 manganese oxide in situ oxidation ADSORBENT regulation mechanism PHYSICAL chemical properties
下载PDF
Synergism of preintercalated manganese ions and lattice water in vanadium oxide cathodes for high-capacity and long-life Zn-ion batteries
4
作者 Mengjing Wu Rongrong Li +3 位作者 Kai Yang Lijiang Yin Weikang Hu Xiong Pu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期709-717,共9页
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials... Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs. 展开更多
关键词 Zn-ion batteries Vanadium oxide Pre-intercalation Lattice water manganese ion
下载PDF
Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis
5
作者 Wenxing Cao Jiancheng Shu +5 位作者 Jiaming Chen Zihan Li Songshan Zhou Shushu Liao Mengjun Chen Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期531-538,共8页
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi... Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER. 展开更多
关键词 iron-rich electrolytic manganese residue slurry electrolysis high-purity iron powder leaching efficiency current efficiency
下载PDF
Covalency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage
6
作者 Peng Gao Pei Tang +7 位作者 Ying Mo Peitao Xiao Wang Zhou Shi Chen Hongliang Dong Ziwei Li Chaohe Xu Jilei Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期909-918,共10页
Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ... Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties. 展开更多
关键词 manganese cobaltite Tetrahedrally-coordinated Co^(2+)leaching Selective bond breakage Surface reconstruction Charge storage mechanisms
下载PDF
The Influence of CO_(2) Cured Manganese Slag on the Performance and Mechanical Properties of Ultra-High Performance Concrete
7
作者 Ligai Bai Guihua Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1717-1730,共14页
The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this ma... The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties. 展开更多
关键词 CO_(2)curing manganese slag steel fibers mechanical strengths salt action
下载PDF
Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization,and prospects 被引量:1
8
作者 Mengwei Guo Rongrong Deng +1 位作者 Chaowu Wang Qibo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期537-553,I0015,共18页
The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen ene... The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen energy and mass-scale hydrogen production via water electrolysis,several obstacles,such as the multi-electron transfer OER process with sluggish kinetics and overall high reaction barrier,should be overcome.Manganese oxide-based(MnOx) materials,especially MnO_(2),have emerged as promising non-noble electrocatalysts for water electro-oxidation under acidic conditions due to their wellbalanced properties between catalytic activity and stability.This review introduces the fundamental understanding of the catalytic OER process on MnOx-based materials,including the conventional adsorbate evolution mechanism(AEM) and emerging lattice oxygen oxidation mechanism(LOM).The rational screening and prediction of MnOx-based catalysts that can stably catalyze OER in acid are summarized based on Pourbaix diagram analysis and thermodynamic density functional theory(DFT) calculations.Then,the up-to-date progress of upgrading the OER catalytic performance of MnOx-based catalysts by composite construction is reviewed.Afterward,feasible strategies to improve the electrocatalytic activity and lifetime of MnOx-based catalysts are systemically discussed in terms of crystal structure control,reasonable setting of working potential and electrolyte environment,optimal selection of acid-stable conductive supports,and self-healing engineering.Finally,future scientific challenges and research directions are outlined to guide the construction of advanced MnOx-based electrocatalysts for OER in acid. 展开更多
关键词 manganese oxide-based materials manganese dioxides ELECTROCATALYSTS Oxygen evolution reaction Acidic solution
下载PDF
Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zinc-Ion Batteries 被引量:4
9
作者 Yuhui Xu Gaini Zhang +9 位作者 Jingqian Liu Jianhua Zhang Xiaoxue Wang Xiaohua Pu Jingjing Wang Cheng Yan Yanyan Cao Huijuan Yang Wenbin Li Xifei Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期158-181,共24页
Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode m... Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode materials,manganese dioxide with high voltage,environmental protection,and high theoretical specific capacity receives considerable attention.However,the problems of structural instability,manganese dissolution,and poor electrical conductivity make the exploration of high-performance manganese dioxide still a great challenge and impede its practical applications.Besides,zinc storage mechanisms involved are complex and somewhat controversial.To address these issues,tremendous efforts,such as surface engineering,heteroatoms doping,defect engineering,electrolyte modification,and some advanced characterization technologies,have been devoted to improving its electrochemical performance and illustrating zinc storage mechanism.In this review,we particularly focus on the classification of manganese dioxide based on crystal structures,zinc ions storage mechanisms,the existing challenges,and corresponding optimization strategies as well as structure-performance relationship.In the final section,the application perspectives of manganese oxide cathode materials in AZIBs are prospected. 展开更多
关键词 aqueous zinc-ion batteries CHALLENGES manganese dioxide optimized strategies zinc storage mechanisms
下载PDF
Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol-gel and electrospinning methods:Effect of Na-excess content 被引量:2
10
作者 Thongsuk Sichumsaeng Atchara Chinnakorn +3 位作者 Ornuma Kalawa Jintara Padchasri Pinit Kidkhunthod Santi Maensiri 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1887-1896,共10页
The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X... The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors. 展开更多
关键词 sodium nickel manganese oxide mixed P2/O′3-type Na-excess content sol-gel method electrospinning method electrochemical properties
下载PDF
Advances of manganese-oxides-based catalysts for indoor formaldehyde removal 被引量:1
11
作者 Jiayu Zheng Wenkang Zhao +5 位作者 Liyun Song Hao Wang Hui Yan Ge Chen Changbao Han Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期626-653,共28页
Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to thei... Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to their high catalytic activity,low-cost,and environmentally friendly.In this paper,the progress in developing MnO_(x)-based catalysts for HCHO removal is comprehensively reviewed for exploring the mechanisms of catalytic oxidation and catalytic deactivation.The catalytic oxidation mechanisms based on three typical theory models(Mars-van-Krevelen,Eley-Rideal and Langmuir-Hinshelwood)are discussed and summarized.Furthermore,the research status of catalytic deactivation,catalysts’regeneration and integrated application of MnO_(x)-based catalysts for indoor HCHO removal are detailed in the review.Finally,the technical challenges in developing MnO_(x)-based catalysts for indoor HCHO removal are analyzed and the possible research direction is also proposed for overcoming the challenges toward practical application of such catalysts. 展开更多
关键词 manganese dioxide(MnOx) Formaldehyde(HCHO) Catalytic oxidation Room temperature Indoors
下载PDF
Corrosion Mechanism of Alumina-magnesia Dry Materials for Smelting Manganese/chromium Steel in Coreless Medium Frequency Induction Furnaces 被引量:1
12
作者 LIU Chenchen HUANG Ao +3 位作者 NIE Jianhua GU Huazhi QIN Chuanjiang Lidah Mpoli NACHILIMA 《China's Refractories》 CAS 2023年第4期8-15,共8页
Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composit... Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials. 展开更多
关键词 coreless medium frequency induction furnace manganese/chromium steel alumina-magnesia dry materials sintering layer corrosion mechanism
下载PDF
Structural,magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids
13
作者 Blessy Babukutty Deepalekshmi Ponnamma +3 位作者 Swapna S.Nair Jiya Jose Saritha G.Bhat Sabu Thomas 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1417-1426,共10页
Manganese-substituted magnetite ferrofluids(FFs)Mnx Fe_(1-x)Fe_(2)O_(4)(x=0–0.8)were prepared in this work through a chemical coprecipitation reaction.The controlled growth of FF nanomaterials for antibacterial activ... Manganese-substituted magnetite ferrofluids(FFs)Mnx Fe_(1-x)Fe_(2)O_(4)(x=0–0.8)were prepared in this work through a chemical coprecipitation reaction.The controlled growth of FF nanomaterials for antibacterial activities is challenging,and therefore,very few reports are available on the topic.This research focuses on stabilizing aqueous FFs with the tetramethylammonium hydroxide surfactant to achieve high homogeneity.Morphological characterization reveals nanoparticles of 5–11 nm formed by the chemical reaction and nanocrystalline nature,as evident from structural investigations.Mn-substituted magnetic FFs are analyzed for their structural,functional,and antibacterial performance according to the Mn-substituent content.Optical studies show a high blue shift for Mn^(2+)-substituted Mnx Fe_(1-x)Fe_(2)O_(4)with the theoretical correlation of optical band gaps with the Mn content.The superparamagnetic nature of substituted FFs causes zero coercivity and remanence,which consequently influence the particle size,cation distribution,and spin canting.The structural and functional performance of the FFs is correlated with the antibacterial activity,finally demonstrating the highest inhibition zone formation for Mnx Fe_(1-x)Fe_(2)O_(4)FFs. 展开更多
关键词 manganese FERROFLUIDS HOMOGENEITY ANTIBACTERIAL stability
下载PDF
Synthesis of zeolite A and zeolite X from electrolytic manganese residue,its characterization and performance for the removal of Cd^(2+)from wastewater
14
作者 Wenlei Li Huixin Jin +1 位作者 Hongyan Xie Lianren Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期31-45,共15页
Electrolytic manganese residue(EMR)can cause serious environmental and biological hazards.In order to solve the problem,zeolite A(EMRZA)and zeolite X(EMRZX)were synthesized by EMR.The pure phase zeolites were synthesi... Electrolytic manganese residue(EMR)can cause serious environmental and biological hazards.In order to solve the problem,zeolite A(EMRZA)and zeolite X(EMRZX)were synthesized by EMR.The pure phase zeolites were synthesized by alkaline melting and hydrothermal two-step process,which had high crystallinity and excellent crystal control.And the optimum conditions for synthesis of zeolite were investigated:NaOH-EMR mass ratio=1.2,L/S=10,hydrothermal temperature=90℃,and hydrothermal time=6 h.Then,EMRZA and EMRZX showed excellent adsorption of Cd^(2+).When T=25℃,time=120min,pH=6,C0=518 mg·L^(-1),and quantity of absorbent=1.5 g·L^(-1),the adsorption capacities of EMRZA and EMRZX reached 314.2 and 289,5 mg·g^(-1),respectively,In addition,after three repeated adsorption-desorption cycles,EMRZA and EMRZX retained 80%and 74%of the initial zeolites removal rates,respectively.Moreover,adsorption results followed quasi-second-order kinetics and monolayer adsorption,which was regulated by a combination of chemisorption and intra-particle diffusion mechanisms.The adsorption mechanism was ions exchange between Cd^(2+)and Na+.In summary,it has been confirmed that EMRZA and EMRZX can be reused as highly efficient adsorbents to treat Cd^(2+)-contaminated wastewater. 展开更多
关键词 Electrolytic manganese residue Zeolite A Zeolite X ADSORPTION Cd ions
下载PDF
Rare earth elements(REE)and isotope composition(δ^(13)C andδ^(18)O)of manganese ores of Chiatura deposit(Georgia):features of ore formation and genesis
15
作者 Vladimir N.Kuleshov Andrey Yu.Bychkov +1 位作者 Irina Yu.Nikolaeva Maria E.Tarnopolskaya 《Acta Geochimica》 EI CAS CSCD 2023年第4期779-801,共23页
The rare earth elements(REE)geochemistry and the isotope(δ^(13)C,δ^(18)O)composition of manganese ores of the Chiatura(Georgia)deposit were studied.One of the major features of all types of manganese ores is negativ... The rare earth elements(REE)geochemistry and the isotope(δ^(13)C,δ^(18)O)composition of manganese ores of the Chiatura(Georgia)deposit were studied.One of the major features of all types of manganese ores is negative cerium(Ce/Ce*_(PAAS))anomaly and the absence of europium(Eu/Eu*_(PAAS))anomaly.Oxide oolitic manganese ores were formed in oxic shallow marine environments.The content and distribution of REEs(in particular Ce and Eu)in these ores are connected mainly with ferrous oxides.The performed C-and O-isotope research in Mn-carbonates(oolitic and massive)has indicated that carbonate ores were formed by the participation of isotopic ally light CO_(2)which is a result of the oxidation of organic matter in the sediment strata by reducing environments of early diagenesis(and,partially,catagenesis)zone.Obtained negative cerium anomalies in the studied carbonate ores reflect the specific REE patterns in pore waters of sediments of earlier isdiagenesis zone of the Oligocene Chiatura's basin.The deficiency of cerium in this zone remains debatable and requires further study.Formation of manganese carbonates took place multistage by the input of incisional solutions of different chemistry into sea bottom waters and sediments.The absence of europium anomaly indicates about lack of hydrothermal solution input. 展开更多
关键词 REE Cerium anomaly Carbon and oxygen isotope geochemistry Oxide and carbonate manganese ores Chiatura deposit
下载PDF
An amorphous manganese iron oxide hollow nanocube cathode for aqueous zinc ion batteries
16
作者 Fengyang Jing Chade Lv +6 位作者 Liangliang Xu Yaru Shang Jian Pei Pin Song Yuanheng Wang Gang Chen Chunshuang Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期314-321,I0008,共9页
Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from... Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials. 展开更多
关键词 Aqueous zinc-ion batteries manganese iron oxide cathode Amorphous structure Hollow nanostructure lons transport kinetics
下载PDF
Glass-compatible and self-powered temperature alarm system by temperature-responsive organic manganese halides via backward energy transfer process
17
作者 Pengfei Xia Fan Liu +4 位作者 Yuru Duan Xuefang Hu Changgui Lu Shuhong Xu Chunlei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期188-194,I0006,共8页
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h... A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day. 展开更多
关键词 Luminescent solar concentrators Organic manganese halides Perovskite-polymer compositefilms Self-powered temperature alarm system Backward energy transfer process
下载PDF
Effects of Manganese on the Antioxidant System and Related Gene Expression Levels in the “Hong Yang” Kiwifruit Seedlings
18
作者 Chongpei Zheng Liangliang Li +2 位作者 Zhencheng Han Weijie Li Xiaopeng Wen 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第8期2399-2412,共14页
To explore how manganese affects the antioxidant system and the expression levels of related genes of“Hong yang”seedlings,the leaves of its tissue cultured seedlings were taken as test materials,and single factor tr... To explore how manganese affects the antioxidant system and the expression levels of related genes of“Hong yang”seedlings,the leaves of its tissue cultured seedlings were taken as test materials,and single factor treatment was performed by changing the manganese chloride(MnCl_(2)·4H_(2)O)solution concentration when spraying the leaves.The expression levels of Mn-SOD,POD64 and POD27 genes in leaves were quantitatively analyzed by real-time quantitative PCR(qRT-PCR)at different determination times.Meanwhile,the contents of malondial-dehyde(MDA),hydrogen peroxide(H_(2)O_(2)),the activities of antioxidant enzymes,including catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD).The results showed that the SOD,CAT,POD,ascorbate peroxidase(APX),and reduced glutathione(GSH)activities in leaves were the highest at 12 h post-treatment with 50μM MnCl_(2)·4H_(2)O.Furthermore,the contents of MDA and H_(2)O_(2) in leaves also peaked when the concentration of H_(2)O_(2) is 50μM,which is the minimum value.Additionally at 50μM Mn^(2+),the Mn-SOD and POD27 expression was up-regulated as compared to the control,which promoted the expression of their respective enzyme activities.However,POD64 expression increased with the increasing Mn^(2+) concentration.Therefore,50μM is the optimal concentration of Mn when exogenously applied on“Hong yang”,which improve the antioxidant enzyme activity and regulate the plant’s physiological and biochemical functions. 展开更多
关键词 “Hong yang”seedlings manganese antioxidant system related gene expression
下载PDF
A Review of Influencing Factors of Damping Properties of High Manganese Steel
19
作者 Chao Chen Jiale Wang +2 位作者 Jianyu Jiao Fengmei Bai Guangwen Zheng 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期52-64,共13页
High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Re... High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel. . 展开更多
关键词 High manganese Steel Damping Properties Alloying Elements Heat Treatment DEFORMATION
下载PDF
Manganese extraction by reduction-acid leaching from low-grade manganese oxide ores using CaS as reductant 被引量:2
20
作者 李昌新 钟宏 +3 位作者 王帅 薛建荣 武芳芳 张振宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1677-1684,共8页
The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to ... The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to solid ratio(L/S ratio), stirring speed, leaching temperature, leaching time and H2SO4 concentration on the leaching rates of Mn and Fe during the reduction–acid leaching process were discussed. The leaching rates of 96.47% for Mn and 19.24% for Fe were obtained under the optimized conditions of mass ratio of Ca S to manganese oxide ore 1:6.7, L/S ratio 5:1, stirring speed 300 r/min, reduction temperature of 95 °C for 2.0 h in the reduction process and leaching stirring speed of 200 r/min, H2SO4 concentration of 1.5 mol/L, leaching temperature of 80 °C for 5 min in the leaching process. In addition, this process can be employed in the recovery of manganese from various manganese oxide ores, and Mn leaching rate above 95% is obtained. 展开更多
关键词 manganese manganese oxide ore calcium sulfide REDUCTION LEACHING
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部