This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s...The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.展开更多
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint...A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulat...Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulators is vital to the successful applications of dual redundant manipulators. Although methods based on the distance function have been demonstrated simple and efficient, different collision avoidance points can usually produce completely different results and even failure. The paper discussed the choices of collision avoidance points and proposed a novel method for the choosing of those points. The method is testified by simulation results of two redundant planar manipulators.展开更多
The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized...The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. H...This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The co- efficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simulta- neously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method pro- vides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators.展开更多
The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relation...The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relationship between the configuration of the joint spaceand the manipulating flexibility of the underactuated redundant manipulator is analyzed, a newmeasure of manipulating flexibility ellipsoid for the underactuated redundant manipulator withpassive joints in locked mode is proposed, which can be used to get the optimal configuration forthe realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear controlmethod based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulationexample of a three-DOFs underactuated manipulator with one passive joint features some aspects ofthe investigations.展开更多
The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive t...The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive to parameters, which makes adjustment difficult; and the latter treats the motion planning as general task by ignoring the particularity, which has good universal property but reduces the solving speed for on-line real-time planning. In this paper, a novel stepwise solution based on self-motion manifold is proposed for motion planning of redundant manipulators, namely, the chief tasks and secondary tasks are implemented step by step. Firstly, the posture tracking of end-effector is achieved accurately by employing the non-redundant joint. Secondly, the end-effector is set to keep stationary. Finally, self-motion of manipulator is realized via additional work on the gradient of redundant joint displacement. To verify this solution, experiments of round obstacle avoiding are carried out via the planar 3 degree-of-~eedom manipulator. And the experimental results indicate that this motion planning algorithm can effectively achieve obstacle avoiding and posture tracking of the end-effector. Compared with traditional gradient projection method, this approach can accelerate the problem-solving process, and is more applicable to obstacle avoiding and other additional work in displacement level.展开更多
Heavy-payload forging manipulators are mainly characterized by large load output and large capacitive-load input.The relationship between outputs and inputs,which will greatly influence the control and the reliability...Heavy-payload forging manipulators are mainly characterized by large load output and large capacitive-load input.The relationship between outputs and inputs,which will greatly influence the control and the reliability,is the key issue in type design for heavy-payload forging manipulators.In this paper,a type design method by considering the incidence relationship between output characteristics and actuator inputs is presented and used to design the mechanism for forging manipulators.The concept of modeling method based on the outputs tasks is defined and investigated.The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed.An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed.The incidence relationship matrix between outputs and inputs is also given.The design flow is obtained,and the incidence relationship between outputs and inputs for heavy-payload forging manipulators is divided into three parts after detailed understanding of the functional properties.Four types of mechanisms for heavy-payload forging manipulators are given,and the corresponding spatial mechanical sketches are also drawn,some new designed mechanisms have been adopted by company or used as prototype.These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators and patent application.展开更多
Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on ...Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.展开更多
In order to suppress vibration in flexible manipulators, a new type of manipulator mechanism with controllable local degrees of freedom is proposed. This mechanism consists of a main chain and some branch links. The m...In order to suppress vibration in flexible manipulators, a new type of manipulator mechanism with controllable local degrees of freedom is proposed. This mechanism consists of a main chain and some branch links. The main chain is of a flexible open-chain configuration with an end-effector installed at its tip, and the rigid branch links are able to perform active movements. It is proved by kinematics and dynamic analysis that, the branch links bear no direct kinematic relation to the main chain, but their independent motions can strongly affect the dynamic behavior and performance of the flexible manipulator. Then comes a new idea of suppressing vibration, in which independent motions of the branch links are used to suppress the undesired vibration of the flexible main chain through dynamic coupling. On this basis, an optimal method for reducing vibration of flexible manipulators is proposed. Finally, the effectiveness of this method is verified by numerical simulations.展开更多
The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effe...The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.展开更多
In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of...In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.展开更多
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper...A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.展开更多
This paper presents an analytical investigation into activevibration control of flexible redundant robot manipulators featuringpiezoelectric actuators and strain gage sensors. The state-sp- aceexpression of the discre...This paper presents an analytical investigation into activevibration control of flexible redundant robot manipulators featuringpiezoelectric actuators and strain gage sensors. The state-sp- aceexpression of the discrete time-varying dynamic system is developedfirstly. The LQR optimal control law is presented based upon thediscrete Minimum Principle. Moreover, an approximate method isproposed for estimating the state information of the system. Finally,a planar 3R flexible redundant manipulator is utilized as anillustration example. The simulation results show that the dy- namicperformance of the manipulator has been improved significantly.展开更多
A novel algorithm, the immune genetic algorithm based on multi-agent, isproposed for the path planning of tightly coordinated two-robot manipulators, which constructsmainly immune operators accomplished by three steps...A novel algorithm, the immune genetic algorithm based on multi-agent, isproposed for the path planning of tightly coordinated two-robot manipulators, which constructsmainly immune operators accomplished by three steps: defining strategies and methods of multi-agent,calculating virtual forces acting on an agent, and constructing immune operators and performingimmunization during the evolutionary process. It is illustrated to be able to restrain thedegenerate phenomenon effectively and improve the searching ability with high converging speed.展开更多
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金Supported by National Natural Science Foundation of China (Grant No.52275036)Key Research and Development Project of the Jiaxing Science and Technology Bureau (Grant No.2022BZ10004)。
文摘The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.
基金Project supported by the National Natural Science Foundation of China(Nos.62273245 and 62173033)the Sichuan Science and Technology Program of China(No.2024NSFSC1486)the Opening Project of Robotic Satellite Key Laboratory of Sichuan Province of China。
文摘A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
文摘Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulators is vital to the successful applications of dual redundant manipulators. Although methods based on the distance function have been demonstrated simple and efficient, different collision avoidance points can usually produce completely different results and even failure. The paper discussed the choices of collision avoidance points and proposed a novel method for the choosing of those points. The method is testified by simulation results of two redundant planar manipulators.
文摘The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
基金supported by the National Natural Science Foundation of China (11072122)
文摘This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The co- efficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simulta- neously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method pro- vides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators.
基金This project is supported by National Natural Science Foundation of China (No.50375007,No.50475177).
文摘The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relationship between the configuration of the joint spaceand the manipulating flexibility of the underactuated redundant manipulator is analyzed, a newmeasure of manipulating flexibility ellipsoid for the underactuated redundant manipulator withpassive joints in locked mode is proposed, which can be used to get the optimal configuration forthe realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear controlmethod based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulationexample of a three-DOFs underactuated manipulator with one passive joint features some aspects ofthe investigations.
基金supported by National Hi-tech Research and Develop- ment Program of China (863 Program, Grant No. 2005AA404291)
文摘The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive to parameters, which makes adjustment difficult; and the latter treats the motion planning as general task by ignoring the particularity, which has good universal property but reduces the solving speed for on-line real-time planning. In this paper, a novel stepwise solution based on self-motion manifold is proposed for motion planning of redundant manipulators, namely, the chief tasks and secondary tasks are implemented step by step. Firstly, the posture tracking of end-effector is achieved accurately by employing the non-redundant joint. Secondly, the end-effector is set to keep stationary. Finally, self-motion of manipulator is realized via additional work on the gradient of redundant joint displacement. To verify this solution, experiments of round obstacle avoiding are carried out via the planar 3 degree-of-~eedom manipulator. And the experimental results indicate that this motion planning algorithm can effectively achieve obstacle avoiding and posture tracking of the end-effector. Compared with traditional gradient projection method, this approach can accelerate the problem-solving process, and is more applicable to obstacle avoiding and other additional work in displacement level.
基金supported by National Key Basic Research Program of China (973 Program,Grant No. 2006CB705402)Important National Science & Technology Specific Projects (Grant No. 2009ZX04002-061)National Hi-tech Research and Development Program of China (863Program,Grant No. 2008AA04XK1478950)
文摘Heavy-payload forging manipulators are mainly characterized by large load output and large capacitive-load input.The relationship between outputs and inputs,which will greatly influence the control and the reliability,is the key issue in type design for heavy-payload forging manipulators.In this paper,a type design method by considering the incidence relationship between output characteristics and actuator inputs is presented and used to design the mechanism for forging manipulators.The concept of modeling method based on the outputs tasks is defined and investigated.The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed.An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed.The incidence relationship matrix between outputs and inputs is also given.The design flow is obtained,and the incidence relationship between outputs and inputs for heavy-payload forging manipulators is divided into three parts after detailed understanding of the functional properties.Four types of mechanisms for heavy-payload forging manipulators are given,and the corresponding spatial mechanical sketches are also drawn,some new designed mechanisms have been adopted by company or used as prototype.These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators and patent application.
基金supported by the Chinese Scholarship Council(CSC)for his Ph D study and research at LARM in the University of Cassino and South Latium,Italy,during 2013-2015
文摘Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.
基金Ministry of Education Important Research Project of Scienceand Technology of China(307005)National Hi-Tech Research and Development Program of China(SQ2007AA04Z231266)
文摘In order to suppress vibration in flexible manipulators, a new type of manipulator mechanism with controllable local degrees of freedom is proposed. This mechanism consists of a main chain and some branch links. The main chain is of a flexible open-chain configuration with an end-effector installed at its tip, and the rigid branch links are able to perform active movements. It is proved by kinematics and dynamic analysis that, the branch links bear no direct kinematic relation to the main chain, but their independent motions can strongly affect the dynamic behavior and performance of the flexible manipulator. Then comes a new idea of suppressing vibration, in which independent motions of the branch links are used to suppress the undesired vibration of the flexible main chain through dynamic coupling. On this basis, an optimal method for reducing vibration of flexible manipulators is proposed. Finally, the effectiveness of this method is verified by numerical simulations.
基金supported by National Natural Science Foundation of China (Grant No. 51075259)Program for New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-10-0579)+1 种基金National Basic Research Program of China (973 program, Grant No.2006CB705407)Key Technologies R&D Program of Shanghai,China (Grant No. 10111100203)
文摘The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.
基金This work was supported in part by the National Key Research and Development Program of China(2021YFB3202200)Guangdong Basic and Applied Basic Research Foundation(2020B1515120071,2021B1515120017).
文摘In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.
基金Project(61374051,61603387)supported by the National Natural Science Foundation of ChinaProjects(20150520112JH,20160414033GH)supported by the Scientific and Technological Development Plan in Jilin Province of ChinaProject(20150102)supported by Opening Funding of State Key Laboratory of Management and Control for Complex Systems,China
文摘A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.
基金National Natural Science F oundation of China(5 9975 0 0 1)
文摘This paper presents an analytical investigation into activevibration control of flexible redundant robot manipulators featuringpiezoelectric actuators and strain gage sensors. The state-sp- aceexpression of the discrete time-varying dynamic system is developedfirstly. The LQR optimal control law is presented based upon thediscrete Minimum Principle. Moreover, an approximate method isproposed for estimating the state information of the system. Finally,a planar 3R flexible redundant manipulator is utilized as anillustration example. The simulation results show that the dy- namicperformance of the manipulator has been improved significantly.
文摘A novel algorithm, the immune genetic algorithm based on multi-agent, isproposed for the path planning of tightly coordinated two-robot manipulators, which constructsmainly immune operators accomplished by three steps: defining strategies and methods of multi-agent,calculating virtual forces acting on an agent, and constructing immune operators and performingimmunization during the evolutionary process. It is illustrated to be able to restrain thedegenerate phenomenon effectively and improve the searching ability with high converging speed.