期刊文献+
共找到2,349篇文章
< 1 2 118 >
每页显示 20 50 100
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets 被引量:1
1
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) Nd-Fe-B permanent magnets numerical simulation microstructure magnetic properties
下载PDF
Additively manufactured Ti–Ta–Cu alloys for the next-generation load-bearing implants 被引量:1
2
作者 Amit Bandyopadhyay Indranath Mitra +4 位作者 Sushant Ciliveri Jose D Avila William Dernell Stuart B Goodman Susmita Bose 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期353-374,共22页
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m... Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants. 展开更多
关键词 TI6AL4V load-bearing implants additive manufacturing 3D printing antibacterial performance
下载PDF
An overview of additively manufactured metal matrix composites:preparation,performance,and challenge
3
作者 Liang-Yu Chen Peng Qin +1 位作者 Lina Zhang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期118-161,共44页
Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In ... Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs. 展开更多
关键词 additive manufacturing FEEDSTOCK metal matrix composites MICROSTRUCTURE PERFORMANCE
下载PDF
Post processing of additive manufactured Mg alloys:Current status,challenges,and opportunities
4
作者 Nooruddin Ansari Fatima Ghassan Alabtah +1 位作者 Mohammad I.Albakri Marwan Khraisheh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1283-1310,共28页
Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the med... Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed. 展开更多
关键词 Magnesium alloy Additive manufacturing POST-PROCESSING Heat treatment HIP
下载PDF
Quasi-static and dynamic compressive behaviour of additively manufactured Menger fractal cube structures
5
作者 Damith Mohotti Dakshitha Weerasinghe +3 位作者 Madhusha Bogahawaththa Hongxu Wang Kasun Wijesooriya Paul JHazell 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期39-49,共11页
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi... This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers. 展开更多
关键词 Additive manufacturing Fractal geometries Menger cube Energy absorption QUASI-STATIC
下载PDF
Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy
6
作者 ZHANG Tao QIN Zhen-yang +2 位作者 GONG Hai WU Yun-xin CHEN Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2181-2193,共13页
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli... Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening. 展开更多
关键词 wire-arc additive manufacture inter-layer cold rolling thermal-mechanical treatment microstructure mechanical properties strengthening mechanism
下载PDF
Customized heat treatment process enabled excellent mechanical properties in wire arc additively manufactured Mg-RE-Zn-Zr alloys
7
作者 Dong Ma Chunjie Xu +7 位作者 Shang Sui Yuanshen Qi Can Guo Zhongming Zhang Jun Tian Fanhong Zeng Sergei Remennik Dan Shechtman 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期276-289,共14页
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve... Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials. 展开更多
关键词 wire arc additive manufacturing heat treatment Mg-RE-Zn-Zr alloys LPSO structure mechanical properties
下载PDF
Additive manufactured osseointegrated screws with hierarchical design
8
作者 Wenbo Yang Hao Chen +6 位作者 Haotian Bai Yifu Sun Aobo Zhang Yang Liu Yuchao Song Qing Han Jincheng Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期206-235,共30页
Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,s... Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength. 展开更多
关键词 Bone screws Additive manufacturing Architecture design Surface modification
下载PDF
Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading
9
作者 Xuanming Cai Yang Hou +6 位作者 Wei Zhang Zhiqiang Fan Yubo Gao Junyuan Wang Heyang Sun Zhujun Zhang Wenshu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期737-749,共13页
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur... Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization. 展开更多
关键词 AlSi10Mg additive manufacture energy absorption characteristics damage by deformation mechanical behavior
下载PDF
Characterization and Modeling of Mechanical Properties of Additively Manufactured Coconut Fiber-Reinforced Polypropylene Composites
10
作者 George Mosi Bernard W. Ikua +1 位作者 Samuel K. Kabini James W. Mwangi 《Advances in Materials Physics and Chemistry》 CAS 2024年第6期95-112,共18页
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene... In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy. 展开更多
关键词 Additive Manufacturing Artificial Neural Network Mechanical Properties Natural Fibers POLYPROPYLENE
下载PDF
Pumpability of Manufactured Sand Self-compacting Concrete
11
作者 LI Huajian HUANG Fali +5 位作者 TU Haifeng SUN Deyi WANG Zhen YI Zhonglai YANG Zhiqiang XIE Yongjiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1382-1390,共9页
By the addition of superplasticizer and air entraining agent,manufactured sand selfcompacting concrete(MS SCC)with slump flow varying from 500 to 700 mm and air content varying from 2.0%to 9.0%were prepared and the pu... By the addition of superplasticizer and air entraining agent,manufactured sand selfcompacting concrete(MS SCC)with slump flow varying from 500 to 700 mm and air content varying from 2.0%to 9.0%were prepared and the pumpability of MS SCC was studied by a sliding pipe rheometer(Sliper).According to the Kaplan’s model,the initial pump pressure and the pump resistance of MS SCC were obtained.Meanwhile,rheological properties including the yield stress and the plastic viscosity of MS SCC were measured by a rheometer.The experimental results show that the increase of slump flow contributes to a higher pumpability and a proper air content,i e,6%is beneficial for the pumpability of MS SCC.Due to the existence of stone powder and stronger angularity of MS,the initial pump pressure of MS SCC is only about 60%-88%that of river sand(RS)SCC with the same slump flow and air content,indicating that MS SCC possesses a higher pumpability than RS SCC. 展开更多
关键词 manufactured sand self-compacting concrete PUMPABILITY sliding pipe rheometer RHEOLOGY
下载PDF
Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time 被引量:2
12
作者 Dong Ma Chunjie Xu +6 位作者 Shang Sui Jun Tian Can Guo Xiangquan Wu Zhongming Zhang Dan Shechtman Sergei Remennik 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4696-4709,共14页
Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc ... Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys. 展开更多
关键词 Wire arc additive manufacturing Interlayer dwell time Strength-ductility Magnesium alloys
下载PDF
Strengthening and toughening of additively manufactured Ti-6Al-4V alloy by hybrid deposition and synchronous micro-rolling
13
作者 Kui Cheng Hao Song +6 位作者 Xin-wang Liu Ming-bo Zhang Fei-hu Shan Kun He Zi-tian Fan Gui-lan Wang Hai-ou Zhang 《China Foundry》 SCIE CAS CSCD 2023年第3期189-196,共8页
To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is propose... To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is proposed.The micro-rolling leads to equiaxed prior β grains,thin discontinuous intergranular α,and equiaxed primary α,in contrast to the coarse columnar prior β grains without the application of micro-rolling.The recrystallization by micro-rolling results in discontinuous intergranular α via the mechanism of strain and interface-induced grain boundary migration.The evolution of α globularization,driven by a solute concentration gradient,starts from the sub-boundary until the formation of equiaxed primary α.Simultaneous strengthening and toughening are achieved,which means an increase in yield strength,ultimate tensile strength,fracture elongation,and work hardening rate.The formation of α recrystallization leads to more fine grain boundaries to strengthen the yield strength,and the improvement of ductility is due to the better-coordinated deformation ability of discontinuous intergranular α and equiaxed primary α.As a result,the fracture mode in micro-rolling changes from intergranular type to transgranular type. 展开更多
关键词 TI-6AL-4V additive manufacturing micro-rolling grain refinement tensile property
下载PDF
Effect of Methylene Blue (MB)-value of Manufactured Sand on the Durability of Concretes 被引量:5
14
作者 王稷良 NIU Kaimin +1 位作者 TIAN Bo SUN liqun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1160-1164,共5页
The relation between the methylene blue (MB) value of MS and its limestone powder content and clay content was investigated. The effects of MB values ranging from 0.35 to 2.5 on the workability of fresh concrete, th... The relation between the methylene blue (MB) value of MS and its limestone powder content and clay content was investigated. The effects of MB values ranging from 0.35 to 2.5 on the workability of fresh concrete, the mechanical properties, the resistance to freezing as well as the resistance to chlorine ion permeation of the hardened concrete were all investigated. The experimental results showed that the MB value had no correlation with the limestone powder content of MS, while it was directly related to the clay content. With an increase of MB value, concrete workability decreased, as did the flexural and 7-day compressive strengths, however, the 28-day compressive strength was not affected. Furthermore, influence of MB value on concretes of different strength levels was different. For low-strength concretes, an increase of MB value could improve its impermeability, but this was not the case for high-strength concretes. Instead, their resistance to chloride ion permeability decreased slightly. However, even a slight increase in MB value remarkably accelerated freeze-thaw damage of MS concrete. It was thus concluded that the critical MB value of 1.4 would not cause significant deterioration in the performance of MS concretes. 展开更多
关键词 manufactured sand methylene blue value clay content resistance to freezing chlorine ionpermeability coefficient
下载PDF
Influence of MB-value of Manufactured Sand on the Shrinkage and Cracking of High Strength Concrete 被引量:4
15
作者 王稷良 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期321-325,共5页
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ... The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable. 展开更多
关键词 manufactured sand methylene blue value high strength concrete anti-cracking SHRINKAGE
下载PDF
Relationships between Modified Methylene Blue Value of Microfines in Manufactured Sand and Concrete Properties 被引量:2
16
作者 刘战鳌 周明凯 LI Beixing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期574-581,共8页
To better understand and assess the effect of microfines on concrete properties, the synergetic effect of methylene blue value and content of microfines on properties of low and high strength concrete was studied and ... To better understand and assess the effect of microfines on concrete properties, the synergetic effect of methylene blue value and content of microfines on properties of low and high strength concrete was studied and then the relationships between the index of modified methylene blue value (MMBV) and concrete properties were investigated. The results show that relationships between MMBV and fresh and hardened properties of concrete can be fully established, and the correlation between MMBV and C60 concrete property is higher than the correlation between MMBV and C30 concrete. With the increase of MMBV, concrete workability and frost resistance decrease while drying shrinkage decreases; however, compressive strength and chloride-ion penetration resistance of C30 concrete have not been negatively affected whereas those of C60 concrete are significantly deteriorated when MMBV exceeds 100. To make use of microfines without remarkably damaging concrete quality, it is suggested that MMBV of microfines in MS used in C30 and C60 concrete be no more than 100. 展开更多
关键词 microfines manufactured sand modified methylene blue low and high strength CONCRETE
下载PDF
Magnetic Properties and Workability of 6.5% Si Steel Sheet Manufactured by Siliconizing Process 被引量:2
17
作者 Koichiro Fujita, Misao Namikawa and Yoshikazu Takada (Materials and Processing Research Center NKK Corp., 1-1 Minamiwatarida-cho, Kawasaki-ku Kawasaki-shi, 210-0855 Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期137-140,共4页
A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable... A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the workability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed. 展开更多
关键词 Si Steel Sheet manufactured by Siliconizing Process Magnetic Properties and Workability of 6.5 St
下载PDF
Effects of the Lithologic Character of Manufactured Sand on Properties of Concrete 被引量:6
18
作者 王稷良 YANG Zhifeng LIU Yihan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1213-1218,共6页
Six representative parent rocks of sand, including limestone, quartzite, gneisses, granite, Basalt and Marble were selected to conduct a systematical research on the effects of various lithologies of manufactured sand... Six representative parent rocks of sand, including limestone, quartzite, gneisses, granite, Basalt and Marble were selected to conduct a systematical research on the effects of various lithologies of manufactured sand on the workability, mechanism properties, volume stability and durability of manufacturedsand concrete. The experimental results show that the strength of manufactured-sand concrete is slightly higher than that of natural-sand concrete. Furthermore, substituting 15% cement of the concrete mixture with equal quantity of the six different lithology stone powder respectively, the data indicated that they can improve the concrete’s workability, postpone the plastic cracking time, enhance the anti-cracking grade, and have no obvious effect on the properties of antifreeze and sulfate attack resistance but reduce the capability to resist chloride ion penetration. Moreover, the differences in concrete’s workability, mechanism properties, volume stability and durability caused by various lithologies of manufactured sand and stone powder were not significant and the influence of lithology variety on the macro properties of concrete could be neglected eventually. 展开更多
关键词 manufactured sand lithologic character workability volume stability durability
下载PDF
Self-compacting Concrete-filled Steel Tubes Prepared from Manufactured Sand with a High Content of Limestone Fines 被引量:1
19
作者 李北星 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期326-329,共4页
To meet the requirements of construction of concretes filled in the steel tube arches,a C60 grade micro-expansive self-compacting concrete (SCC) was prepared from manufactured sand (MS).The utilization of MS with ... To meet the requirements of construction of concretes filled in the steel tube arches,a C60 grade micro-expansive self-compacting concrete (SCC) was prepared from manufactured sand (MS).The utilization of MS with a high content of quarry limestone fines was dealed for SCC applications.The workability,compressive and splitting strength,modulus of elasticity,restrained expansion and chloride ion permeability as well as freeze-thaw resistance of three MS-SCC mixes with fines content of 3%,7% and 10% were tested and compared with those of the natural sand (NS)-SCC mix.The experimental results indicate that the performances of the C60 MS-SCC with fines content of 7% are excellent and compared favorably with those of C60 NS-SCC. 展开更多
关键词 self-compacting concrete manufactured sand quarry fines PERFORMANCES
下载PDF
Accuracy analysis of immersed boundary method using method of manufactured solutions 被引量:1
20
作者 宫兆新 鲁传敬 黄华雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第10期1197-1208,共12页
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.T... The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.The procedure contains two parts,i.e.,the code verification and the accuracy analysis.The code verification provides the confidence that the code used is free of mistakes,and the accuracy analysis gives the order of accuracy of the immersed boundary method.The method of manufactured solutions is taken as a means for both parts.In the first part,the numerical code employs a second-order discretization scheme,i.e.,it has second-order accuracy in theory.It matches the calculated order of accuracy obtained in the numerical calculation for all variables.This means that the code contains no mistake,which is a premise of the subsequent work.The second part introduces a jump in the manufactured solution for the pressure and adds the corresponding singular forcing terms in the momentum equations.By analyzing the discretization errors,the accuracy of the immersed boundary method is proven to be first order even though the discretization scheme is second order.It has been found that the coarser mesh may not be sensitive enough to capture the influence of the immersed boundary,and the refinement on the Lagrangian markers barely has any effect on the numerical calculation. 展开更多
关键词 manufactured solution immersed boundary method order of accuracy code verification discretization error
下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部