期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Non-Linear Matrix Completion
1
作者 Fengrui Zhang Randy C. Paffenroth David Worth 《Journal of Data Analysis and Information Processing》 2024年第1期115-137,共23页
Current methods for predicting missing values in datasets often rely on simplistic approaches such as taking median value of attributes, limiting their applicability. Real-world observations can be diverse, taking sto... Current methods for predicting missing values in datasets often rely on simplistic approaches such as taking median value of attributes, limiting their applicability. Real-world observations can be diverse, taking stock price as example, ranging from prices post-IPO to values before a company’s collapse, or instances where certain data points are missing due to stock suspension. In this paper, we propose a novel approach using Nonlinear Matrix Completion (NIMC) and Deep Matrix Completion (DIMC) to predict associations, and conduct experiment on financial data between dates and stocks. Our method leverages various types of stock observations to capture latent factors explaining the observed date-stock associations. Notably, our approach is nonlinear, making it suitable for datasets with nonlinear structures, such as the Russell 3000. Unlike traditional methods that may suffer from information loss, NIMC and DIMC maintain nearly complete information, especially in high-dimensional parameters. We compared our approach with state-of-the-art linear methods, including Inductive Matrix Completion, Nonlinear Inductive Matrix Completion, and Deep Inductive Matrix Completion. Our findings show that the nonlinear matrix completion method is particularly effective for handling nonlinear structured data, as exemplified by the Russell 3000. Additionally, we validate the information loss of the three methods across different dimensionalities. 展开更多
关键词 matrix completion Data Pipeline Machine Learning
下载PDF
Tri-party deep network representation learning using inductive matrix completion 被引量:3
2
作者 YE Zhong-lin ZHAO Hai-xing +2 位作者 ZHANG Ke ZHU Yu XIAO Yu-zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2746-2758,共13页
Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha... Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches. 展开更多
关键词 network representation network embedding representation learning matrix-forestindex inductive matrix completion
下载PDF
5G Ultra-Dense Network Fingerprint Positioning Method Based on Matrix Completion 被引量:1
3
作者 Yuexia Zhang Chong Liu 《China Communications》 SCIE CSCD 2023年第3期105-118,共14页
The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome t... The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm. 展开更多
关键词 indoor positioning fingerprint matching matrix completion 5G UDN RSSI
下载PDF
A Singular Value Thresholding Based Matrix Completion Method for DOA Estimation in Nonuniform Noise 被引量:1
4
作者 Peiling Wang Jinfeng Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2021年第4期368-376,共9页
Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performa... Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performance of DOA estimators may be deteriorated greatly if the non-uniformity of noise is ignored.To tackle this problem,we consider the problem of DOA es-timation in the presence of nonuniform noise by leveraging a singular value thresholding(SVT)based matrix completion method.Different from that the traditional SVT method apply fixed threshold,to improve the performance,the proposed method can obtain a more suitable threshold based on careful estimation of the signal-to-noise ratio(SNR)levels.Specifically,we firstly employ an SVT-based matrix completion method to estimate the noise-free covariance matrix.On this basis,the signal and noise subspaces are obtained from the eigendecomposition of the noise-free cov-ariance matrix.Finally,traditional subspace-based DOA estimation approaches can be directly ap-plied to determine the DOAs.Numerical simulations are performed to demonstrate the effective-ness of the proposed method. 展开更多
关键词 direction-of-arrival estimation nonuniform noise matrix completion
下载PDF
PROJECTED GRADIENT DESCENT BASED ON SOFT THRESHOLDING IN MATRIX COMPLETION 被引量:1
5
作者 Zhao Yujuan Zheng Baoyu Chen Shouning 《Journal of Electronics(China)》 2013年第6期517-524,共8页
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin... Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution. 展开更多
关键词 matrix completion (MC) Compressed Sensing (CS) Iterative thresholding algorithm Projected Gradient Descent based on Soft Thresholding (STPGD)
下载PDF
Covariate-Assisted Matrix Completion with Multiple Structural Breaks
6
作者 MENG Jing FENG Long +1 位作者 ZOU Changliang WANG Zhaojun 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期692-728,共37页
In matrix completion,additional covariates often provide valuable information for completing the unobserved entries of a high-dimensional low-rank matrix A.In this paper,the authors consider the matrix recovery proble... In matrix completion,additional covariates often provide valuable information for completing the unobserved entries of a high-dimensional low-rank matrix A.In this paper,the authors consider the matrix recovery problem when there are multiple structural breaks in the coefficient matrix β under the column-space-decomposition model A=Xβ+B.A cumulative sum(CUSUM)statistic is constructed based on the penalized estimation of β.Then the CUSUM is incorporated into the Wild Binary Segmentation(WBS)algorithm to consistently estimate the location of breaks.Consequently,a nearly-optimal recovery of A is fulfilled.Theoretical findings are further corroborated via numerical experiments and a real-data application. 展开更多
关键词 Additional covariates matrix completion multiple structural breaks wild Binary Segmentation
原文传递
LOW-RANK MATRIX COMPLETION WITH POISSON OBSERVATIONS VIA NUCLEAR NORM AND TOTAL VARIATION CONSTRAINTS
7
作者 Duo Qiu Michael K.Ng Xiongjun Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第6期1427-1451,共25页
In this paper,we study the low-rank matrix completion problem with Poisson observations,where only partial entries are available and the observations are in the presence of Poisson noise.We propose a novel model compo... In this paper,we study the low-rank matrix completion problem with Poisson observations,where only partial entries are available and the observations are in the presence of Poisson noise.We propose a novel model composed of the Kullback-Leibler(KL)divergence by using the maximum likelihood estimation of Poisson noise,and total variation(TV)and nuclear norm constraints.Here the nuclear norm and TV constraints are utilized to explore the approximate low-rankness and piecewise smoothness of the underlying matrix,respectively.The advantage of these two constraints in the proposed model is that the low-rankness and piecewise smoothness of the underlying matrix can be exploited simultaneously,and they can be regularized for many real-world image data.An upper error bound of the estimator of the proposed model is established with high probability,which is not larger than that of only TV or nuclear norm constraint.To the best of our knowledge,this is the first work to utilize both low-rank and TV constraints with theoretical error bounds for matrix completion under Poisson observations.Extensive numerical examples on both synthetic data and real-world images are reported to corroborate the superiority of the proposed approach. 展开更多
关键词 Low-rank matrix completion Nuclear norm Total variation Poisson observations
原文传递
An alternating direction algorithm for matrix completion with nonnegative factors 被引量:24
8
作者 Yangyang XU Wotao YIN +1 位作者 Zaiwen WEN Yin ZHANG 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第2期365-384,共20页
This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matri... This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matrix M whose elements are partially known (to a certain accuracy). This problem aggregates two existing problems: (i) nonnegative matrix factorization where all entries of M are given, and (ii) low-rank matrix completion where non- negativity is not required. By taking the advantages of both nonnegativity and low-rankness, one can generally obtain superior results than those of just using one of the two properties. We propose to solve the non-convex constrained least-squares problem using an algorithm based on tile classical alternating direction augmented Lagrangian method. Preliminary convergence properties of the algorithm and numerical simulation results are presented. Compared to a recent algorithm for nonnegative matrix factorization, the proposed algorithm produces factorizations of similar quality using only about half of the matrix entries. On tasks of recovering incomplete grayscale and hyperspeetral images, the proposed algorithm yields overall better qualities than those produced by two recent matrix-completion algorithms that do not exploit nonnegativity. 展开更多
关键词 nonnegative matrix factorization matrix completion alternating direction method hyperspectral unmixing
原文传递
Multi-task regression learning for survival analysis via prior information guided transductive matrix completion 被引量:1
9
作者 Lei Chen Kai Shao +1 位作者 Xianzhong Long Lingsheng Wang 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第5期99-112,共14页
Survival analysis aims to predict the occurrence time of a particular event of interest,which is crucial for the prognosis analysis of diseases.Currently,due to the limited study period and potential losing tracks,the... Survival analysis aims to predict the occurrence time of a particular event of interest,which is crucial for the prognosis analysis of diseases.Currently,due to the limited study period and potential losing tracks,the observed data inevitably involve some censored instances,and thus brings a unique challenge that distinguishes from the general regression problems.In addition,survival analysis also suffers from other inherent challenges such as the high-dimension and small-sample-size problems.To address these challenges,we propose a novel multi-task regression learning model,i.e.,prior information guided transductive matrix completion(PigTMC)model,to predict the survival status of the new instances.Specifically,we use the multi-label transductive matrix completion framework to leverage the censored instances together with the uncensored instances as the training samples,and simultaneously employ the multi-task transductive feature selection scheme to alleviate the overfitting issue caused by high-dimension and small-sample-size data.In addition,we employ the prior temporal stability of the survival statuses at adjacent time intervals to guide survival analysis.Furthermore,we design an optimization algorithm with guaranteed convergence to solve the proposed PigTMC model.Finally,the extensive experiments performed on the real microarray gene expression datasets demonstrate that our proposed model outperforms the previously widely used competing methods. 展开更多
关键词 survival analysis matrix completion multi-task regression transductive learning multi-task feature selection
原文传递
ROBUST INEXACT ALTERNATING OPTIMIZATION FOR MATRIX COMPLETION WITH OUTLIERS 被引量:1
10
作者 Ji Li Jian-Feng Cai Hongkai Zhao 《Journal of Computational Mathematics》 SCIE CSCD 2020年第2期337-354,共18页
We investigate the problem of robust matrix completion with a fraction of observation corrupted by sparsity outlier noise.We propose an algorithmic framework based on the ADMM algorithm for a non-convex optimization,w... We investigate the problem of robust matrix completion with a fraction of observation corrupted by sparsity outlier noise.We propose an algorithmic framework based on the ADMM algorithm for a non-convex optimization,whose objective function consists of an l1 norm data fidelity and a rank constraint.To reduce the computational cost per iteration,two inexact schemes are developed to replace the most time-consuming step in the generic ADMM algorithm.The resulting algorithms remarkably outperform the existing solvers for robust matrix completion with outlier noise.When the noise is severe and the underlying matrix is ill-conditioned,the proposed algorithms are faster and give more accurate solutions than state-of-the-art robust matrix completion approaches. 展开更多
关键词 matrix completion ADMM Outlier noise Inexact projection
原文传递
Decentralized and Privacy-Preserving Low-Rank Matrix Completion 被引量:1
11
作者 An-Ya Lin Qing Ling 《Journal of the Operations Research Society of China》 EI CSCD 2015年第2期189-205,共17页
In this paper,we propose a decentralized algorithm to solve the low-rank matrix completion problem and analyze its privacy-preserving property.Suppose that we want to recover a low-rank matrix D=[D1,D2,・・・,DL]from a s... In this paper,we propose a decentralized algorithm to solve the low-rank matrix completion problem and analyze its privacy-preserving property.Suppose that we want to recover a low-rank matrix D=[D1,D2,・・・,DL]from a subset of its entries.In a network composed of L agents,each agent i observes some entries of Di.We factorize the unknown matrix D as the product of a public matrix X which is common to all agents and a private matrix Y=[Y1,Y2,・・・,YL]of which Yi is held by agent i only.Each agent i updates Yi and its local estimate of X,denoted by X(i),in an alternating manner.Through exchanging information with neighbors,all the agents move toward a consensus on the estimates X(i).Once the consensus is(nearly)reached throughout the network,each agent i recovers Di=X(i)Yi,thus D is recovered.In this progress,communication through the network may disclose sensitive information about the data matrices Di to a malicious agent.We prove that in the proposed algorithm,D-LMaFit,if the network topology is well designed,the malicious agent is unable to reconstruct the sensitive information from others. 展开更多
关键词 Decentralized algorithm matrix completion PRIVACY-PRESERVING
原文传递
Half thresholding eigenvalue algorithm for semidefinite matrix completion
12
作者 CHEN YongQiang LUO ZiYan XIU NaiHua 《Science China Mathematics》 SCIE CSCD 2015年第9期2015-2032,共18页
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, S... The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm. 展开更多
关键词 semidefinite matrix completion S1/2relaxation half thresholding eigenvalue algorithm conver-gence
原文传递
Robust linear optimization under matrix completion
13
作者 WEN ShouWen XU FangFang +1 位作者 WEN ZaiWen LIN Chen 《Science China Mathematics》 SCIE 2014年第4期699-710,共12页
Linear programming models have been widely used in input-output analysis for analyzing the interdependence of industries in economics and in environmental science.In these applications,some of the entries of the coeff... Linear programming models have been widely used in input-output analysis for analyzing the interdependence of industries in economics and in environmental science.In these applications,some of the entries of the coefficient matrix cannot be measured physically or there exists sampling errors.However,the coefficient matrix can often be low-rank.We characterize the robust counterpart of these types of linear programming problems with uncertainty set described by the nuclear norm.Simulations for the input-output analysis show that the new paradigm can be helpful. 展开更多
关键词 robust optimization linear programming matrix completion input-output analysis
原文传递
Analysis of Sparse Quasi-Newton Updates with Positive Definite Matrix Completion
14
作者 Yu-Hong Dai Nobuo Yamashita 《Journal of the Operations Research Society of China》 EI 2014年第1期39-56,共18页
Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with spa... Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with sparse Hessian structures.In exchange of the relaxation of the secant equation,the MCQN update avoids solving difficult subproblems and overcomes the ill-conditioning of approximate Hessian matrices.However,local and superlinear convergence results were only established for the MCQN update with the DFP method.In this paper,we extend the convergence result to the MCQN update with the whole Broyden’s convex family.Numerical results are also reported,which suggest some efficient ways of choosing the parameter in the MCQN update the Broyden’s family. 展开更多
关键词 Quasi-Newton method Large-scale problems SPARSITY Positive definite matrix completion Superlinear convergence
原文传递
Matrix Completions and Chordal Graphs
15
作者 KennethJohnHARRISON 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第3期577-590,共14页
In a matrix-completion problem the aim is to specify the missing entries of a matrix in order to produce a matrix with particular properties. In this paper we survey results concerning matrix-completion problems where... In a matrix-completion problem the aim is to specify the missing entries of a matrix in order to produce a matrix with particular properties. In this paper we survey results concerning matrix-completion problems where we look for completions of various types for partial matrices supported on a given pattern. We see that the existence of completions of the required type often depends on the chordal properties of graphs associated with the pattern. 展开更多
关键词 matrix completions Chordal graph
原文传递
Accelerated Matrix Recovery via Random Projection Based on Inexact Augmented Lagrange Multiplier Method 被引量:4
16
作者 王萍 张楚涵 +1 位作者 蔡思佳 李林昊 《Transactions of Tianjin University》 EI CAS 2013年第4期293-299,共7页
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad... In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000. 展开更多
关键词 matrix recovery random projection robust principal component analysis matrix completion outlier pursuit inexact augmented Lagrange multiplier method
下载PDF
An Efficient Algorithm for Low Rank Matrix Restoration Problem with Unknown Noise Level 被引量:2
17
作者 JIN Zheng-fen WANG Duo +1 位作者 SHANG You-lin LV Jin-man 《Chinese Quarterly Journal of Mathematics》 2021年第4期356-368,共13页
Recovering an unknown high dimensional low rank matrix from a small set of entries is widely spread in the fields of machine learning,system identification and image restoration,etc.In many practical applications,the ... Recovering an unknown high dimensional low rank matrix from a small set of entries is widely spread in the fields of machine learning,system identification and image restoration,etc.In many practical applications,the few observations are always corrupted by noise and the noise level is also unknown.A novel model with nuclear norm and square root type estimator has been proposed,which does not rely on the knowledge or on an estimation of the standard deviation of the noise.In this paper,we firstly reformulate the problem to an equivalent variable separated form by introducing an auxiliary variable.Then we propose an efficient alternating direction method of multipliers(ADMM)for solving it.Both of resulting subproblems admit an explicit solution,which makes our algorithm have a cheap computing.Finally,the numerical results show the benefits of the model and the efficiency of the proposed method. 展开更多
关键词 matrix restoration Alternating direction method of multipliers Square root least squares matrix completion
下载PDF
Comparative analysis of energy-level splitting of Pr^(3+) doped in LiYF_4 and LiBiF_4 crystals:a complete energy matrix calculation
18
作者 段美玲 邝小渝 +1 位作者 张彩霞 柴瑞鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期296-303,共8页
Based on the combination of Racah's group-theoretical consideration with Slater's wavefunction, a 91 ×91 complete energy matrix is established in tetragonal ligand field D2d for Pr3+ ion. Thus, the Stark energ... Based on the combination of Racah's group-theoretical consideration with Slater's wavefunction, a 91 ×91 complete energy matrix is established in tetragonal ligand field D2d for Pr3+ ion. Thus, the Stark energy-levels of Pr3+ ions doped separately in LiYF4 and LiBiF4 crystals are calculated, and our calculations imply that the complete energy matrix method can be used as an effective tool to calculate the energy-levels of the systems doped by rare earth ions. Besides, the influence of Pr3+ on energy-level splitting is investigated, and the similarities and the differences between the two doped crystals are demonstrated in detail by comparing their several pairs of curves and crystal field strength quantities. We see that the energy splitting patterns are similar and the crystal field interaction of LiYF4:Pr3+ is stronger than that of LiBiF4:Pr3+. 展开更多
关键词 energy levels splitting rare earth ions complete energy matrix
下载PDF
A two-stage frequency-domain blind source separation method for underdetermined instantaneous mixtures 被引量:1
19
作者 彭天亮 陈阳 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期135-140,共6页
In order to decrease the probability of missing some data points or noises being added in the inverse truncated mixing matrix (ITMM) algorithm, a two-stage frequency- domain method is proposed for blind source separ... In order to decrease the probability of missing some data points or noises being added in the inverse truncated mixing matrix (ITMM) algorithm, a two-stage frequency- domain method is proposed for blind source separation of underdetermined instantaneous mixtures. The separation process is decomposed into two steps of ITMM and matrix completion in the view that there are many soft-sparse (not very sparse) sources. First, the mixing matrix is estimated and the sources are recovered by the traditional ITMM algorithm in the frequency domain. Then, in order to retrieve the missing data and remove noises, the matrix completion technique is applied to each preliminary estimated source by the traditional ITMM algorithm in the frequency domain. Simulations show that, compared with the traditional ITMM algorithms, the proposed two-stage algorithm has better separation performances. In addition, the time consumption problem is considered. The proposed algorithm outperforms the traditional ITMM algorithm at a cost of no more than one- fourth extra time consumption. 展开更多
关键词 inverse truncated mixing matrix under-determined blind source separation (UBSS) frequencydomain matrix completion
下载PDF
First-order optimality condition of basis pursuit denoise problem
20
作者 朱玮 舒适 成礼智 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1345-1352,共8页
A new first-order optimality condition for the basis pursuit denoise (BPDN) problem is derived. This condition provides a new approach to choose the penalty param- eters adaptively for a fixed point iteration algori... A new first-order optimality condition for the basis pursuit denoise (BPDN) problem is derived. This condition provides a new approach to choose the penalty param- eters adaptively for a fixed point iteration algorithm. Meanwhile, the result is extended to matrix completion which is a new field on the heel of the compressed sensing. The numerical experiments of sparse vector recovery and low-rank matrix completion show validity of the theoretic results. 展开更多
关键词 basis pursuit denoise (BPDN) fixed point iteration first-order optimality matrix completion
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部