期刊文献+
共找到1,930篇文章
< 1 2 97 >
每页显示 20 50 100
Schur Forms and Normal-Nilpotent Decompositions
1
作者 LI Zhen 《应用数学和力学》 CSCD 北大核心 2024年第9期1200-1211,共12页
Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,su... Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations. 展开更多
关键词 Schur form normal matrix nilpotent matrix tensor decomposition vortex identification
下载PDF
Bacterial communities and enzyme activities during litter decomposition of Elymus nutans leaf on the Qinghai-Tibet Plateau
2
作者 ZHANG Zhiyang JIAO Yi +2 位作者 DONG Xiaogang MA Yinshan ZHANG Shiting 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3249-3262,共14页
The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on ed... The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition. 展开更多
关键词 Litter decomposition Lignocellulose matrix Bacterial community Litter enzyme activity Elymus nutans Qinghai-Tibet Plateau
下载PDF
A Self-calibration Bundle Adjustment Algorithm Based on Block Matrix Cholesky Decomposition Technology 被引量:1
3
作者 Huasheng SUN Yuan ZHANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期11-30,共20页
In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innova... In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innovation points are reflected in the following aspects:①The proposed algorithm is not dependent on the Schur complement,and the calculation process is simple and clear;②The complexities of time and space tend to O(n)in the context of world point number is far greater than that of images and cameras,so the calculation magnitude and memory consumption can be reduced significantly;③The proposed algorithm can carry out self-calibration bundle adjustment in single-camera,multi-camera,and variable-camera modes;④Some measures are employed to improve the optimization effects.Experimental tests showed that the proposed algorithm has the ability to achieve state-of-the-art performance in accuracy and robustness,and it has a strong adaptability as well,because the optimized results are accurate and robust even if the initial values have large deviations from the truth.This study could provide theoretical guidance and technical support for the image-based positioning and 3D reconstruction in the fields of photogrammetry,computer vision and robotics. 展开更多
关键词 bundle adjustment SELF-CALIBRATION block matrix Cholesky decomposition
下载PDF
A Perturbation Analysis of Low-Rank Matrix Recovery by Schatten p-Minimization
4
作者 Zhaoying Sun Huimin Wang Zhihui Zhu 《Journal of Applied Mathematics and Physics》 2024年第2期475-487,共13页
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with... A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP. 展开更多
关键词 Nonconvex Schatten p-Norm low-rank matrix Recovery p-Null Space Property the Restricted Isometry Property
下载PDF
Solutions to the generalized Sylvester matrixequations by a singular value decomposition 被引量:1
5
作者 Bin ZHOU Guangren DUAN 《控制理论与应用(英文版)》 EI 2007年第4期397-403,共7页
In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are est... In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory. 展开更多
关键词 Generalize Sylvester matrix equations General solutions Companion matrix Singular value decomposition
下载PDF
Derivative of a Determinant with Respect to an Eigenvalue in the <i>LDU</i>Decomposition of a Non-Symmetric Matrix 被引量:1
6
作者 Mitsuhiro Kashiwagi 《Applied Mathematics》 2013年第3期464-468,共5页
We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matr... We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matrix. Our proposed method augments an LDU decomposition program with an additional routine to obtain a program for easily evaluating the derivative of a determinant with respect to an eigenvalue. The proposed method follows simply from the process of solving simultaneous linear equations and is particularly effective for band matrices, for which memory requirements are significantly reduced compared to those for dense matrices. We discuss the theory underlying our proposed method and present detailed algorithms for implementing it. 展开更多
关键词 DERIVATIVE of DETERMINANT Non-Symmetric matrix EIGENVALUE Band matrix LDU decomposition
下载PDF
Electrical Data Matrix Decomposition in Smart Grid 被引量:1
7
作者 Qian Dang Huafeng Zhang +3 位作者 Bo Zhao Yanwen He Shiming He Hye-Jin Kim 《Journal on Internet of Things》 2019年第1期1-7,共7页
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ... As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme. 展开更多
关键词 Electrical data recovery matrix decomposition low-rankness smart grid
下载PDF
Schmidt Decomposition of Quaternion Matrix and the Orthonormalization of Vectors in a Generalized Unitary Space 被引量:1
8
作者 王卿文 林春艳 《Chinese Quarterly Journal of Mathematics》 CSCD 1996年第4期30-37, ,共8页
In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary c... In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary column operations on matrices over the quaternion field. 展开更多
关键词 quaternion matrix Schmidt decomposition generalized unitary space (generalized)positive upper matrix
下载PDF
An inversion decomposition method for better energy resolution of NaI(Tl)scintillation detectors based on a Gaussian response matrix 被引量:5
9
作者 Jian-Feng He Yao-Zong Yang +3 位作者 Jin-Hui Qu Qi-Fan Wu Hai-Ling Xiao Cong-Cong Yu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第3期58-67,共10页
NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution ... NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution of these detectors,which detracts from an accurate analysis of the instrument spectra obtained,remains a crucial need.Based on the physical properties and spectrum formation processes of NaI(T1) scintillation detectors,the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum(FWHM) values.The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix,which is employed for the inverse decomposition of gamma spectra obtained from the detector.The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum.Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method,particularly in the low-energy region of the spectrum,providing for the accurate qualitative and quantitative analysis of radionuclides. 展开更多
关键词 闪烁探测器 能量分辨率 响应矩阵 分解方法 NAI 高斯 放射性核素 反演
下载PDF
An inversion decomposition test based on Monte Carlo response matrix on the γ-ray spectra from NaI(Tl) scintillation detector 被引量:3
10
作者 Jian-Feng He Qi-Fan Wu +3 位作者 Jian-Ping Cheng Fang Fang Yao-Zong Yang Jin-Hui Qu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第4期181-192,共12页
The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of lim... The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the Na I(Tl) scintillation detector's energy resolution. This paper, based on the physical process of c photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate c photons with Na I(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests,such as simulating a multi-characteristic energy c-ray spectrum and simulating synthesized overlapping peaks cray spectrum. An inversion decomposition of the c instrument response spectrum for measured samples(U series, Th series and U–Th mixed sources, among others)can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects. 展开更多
关键词 闪烁探测器 矩阵分解 蒙特卡洛 NAI γ射线 反演 光谱 能量分辨率
下载PDF
DIRECT PERTURBATION METHOD FOR REANALYSIS OF MATRIX SINGULAR VALUE DECOMPOSITION
11
作者 吕振华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第5期471-477,共7页
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb... The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method. 展开更多
关键词 matrix algebra singular value decomposition REANALYSIS perturbation method
下载PDF
A novel trilinear decomposition algorithm:Three-dimension non-negative matrix factorization
12
作者 Hong Tao Gao Dong Mei Dai Tong Hua Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第4期495-498,共4页
Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decompos... Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics. 展开更多
关键词 Three-dimension non-negative matrix factorization NMF3 ALGORITHM Data decomposition CHEMOMETRICS
下载PDF
Subspace decomposition-based correlation matrix multiplication
13
作者 Cheng Hao Guo Wei Yu Jingdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期241-245,共5页
The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix... The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation. The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented. 展开更多
关键词 subspace theory correlation matrix eigenvalue decomposition direct sequence spread spectrum signal
下载PDF
PERTURBATION METHOD FOR REANALYSIS OF THE MATRIX SINGULAR VALUE DECOMPOSITION
14
作者 吕振华 冯振东 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第7期705-715,共11页
The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of gr... The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced. 展开更多
关键词 matrix algebra singular value decomposition reanalysis perturbation method
下载PDF
AN IMPROVED SAR-GMTI METHOD BASED ON EIGEN-DECOMPOSITION OF THE SAMPLE COVARIANCE MATRIX 被引量:1
15
作者 Tian Bin Zhu Daiyin Zhu Zhaoda 《Journal of Electronics(China)》 2010年第3期382-390,共9页
An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function... An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function (PDF) of the Along-Track Interferometric (ATI) phase and the similarity between the two SAR complex images, a novel ellipse detector is presented and is applied to the indication of ground moving targets. We derive its statistics and analyze the performance of detection process in detail. Compared with the approach using the ATI phase, the ellipse detector has a better performance of detection in homogenous clutter. Numerical experiments on simulated data are presented to validate the improved performance of the ellipse detector with respect to the ATI phase approach. Finally, the detection capability of the proposed method is demonstrated by measured SAR data. 展开更多
关键词 Ground moving target indication Sample covariance matrix Eigen-decomposition Ellipse detector
下载PDF
Derivative of a Determinant with Respect to an Eigenvalue in the Modified Cholesky Decomposition of a Symmetric Matrix, with Applications to Nonlinear Analysis
16
作者 Mitsuhiro Kashiwagi 《American Journal of Computational Mathematics》 2014年第2期93-103,共11页
In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method i... In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness. 展开更多
关键词 DERIVATIVE of a DETERMINANT with RESPECT to an EIGENVALUE MODIFIED Cholesky decomposition Symmetric matrix Nonlinear FINITE-ELEMENT Methods Singular Points
下载PDF
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors
17
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 Robust Principal Component Analysis Sparse matrix low-rank matrix Hyperspectral Image
下载PDF
Promote the Compression Efficiency of Digital Images by Using Improved CUR Matrix Decomposition Algorithm
18
作者 Qinghai Jin 《Modern Electronic Technology》 2019年第1期6-14,共9页
In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomp... In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomposition algorithm based on standard deviation sampling. Because of retaining more image information, the reconstructed image quality is higher under the same compression ratio. At the same time, in order to further reduce the amount of image information lost during the sampling process of the CUR matrix decomposition algorithm, we propose the SVD-CUR algorithm. The experimental results verify that our algorithm can achieve high image compression efficiency, and also demonstrate the high precision and robustness of CUR matrix decomposition algorithm in dealing with low rank sparse matrix data. 展开更多
关键词 Image compression Standard deviation sampling CUR matrix decomposition SINGULAR VALUE decomposition SVD-CUR
下载PDF
Local MFS Matrix Decomposition Algorithms for Elliptic BVPs in Annuli
19
作者 C.S.Chen Andreas Karageorghis Min Lei 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2024年第1期93-120,共28页
We apply the local method of fundamental solutions(LMFS)to boundary value problems(BVPs)for the Laplace and homogeneous biharmonic equations in annuli.By appropriately choosing the collocation points,the LMFS discreti... We apply the local method of fundamental solutions(LMFS)to boundary value problems(BVPs)for the Laplace and homogeneous biharmonic equations in annuli.By appropriately choosing the collocation points,the LMFS discretization yields sparse block circulant system matrices.As a result,matrix decomposition algorithms(MDAs)and fast Fourier transforms(FFTs)can be used for the solution of the systems resulting in considerable savings in both computational time and storage requirements.The accuracy of the method and its ability to solve large scale problems are demonstrated by applying it to several numerical experiments. 展开更多
关键词 Local method of fundamental solutions Poisson equation biharmonic equation matrix decomposition algorithms fast Fourier transforms
原文传递
Randomized Generalized Singular Value Decomposition 被引量:1
20
作者 Wei Wei Hui Zhang +1 位作者 Xi Yang Xiaoping Chen 《Communications on Applied Mathematics and Computation》 2021年第1期137-156,共20页
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo... The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement. 展开更多
关键词 Generalized singular value decomposition Randomized algorithm low-rank approximation Error analysis
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部