期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bio-Inspired Intelligent Routing in WSN: Integrating Mayfly Optimization and Enhanced Ant Colony Optimization for Energy-Efficient Cluster Formation and Maintenance
1
作者 V.G.Saranya S.Karthik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期127-150,共24页
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node... Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE). 展开更多
关键词 Enhanced ant colony optimization mayfly optimization algorithm wireless sensor networks cluster head base station(BS)
下载PDF
Signal Conducting System with Effective Optimization Using Deep Learning for Schizophrenia Classification
2
作者 V.Divya S.Sendil Kumar +1 位作者 V.Gokula Krishnan Manoj Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1869-1886,共18页
Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to det... Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to determine the EEG signal in order to classify the brain function which shows whether a person is affected with schizophrenia or not.Early detection and intervention are vital for better prognosis.However,the diagnosis of schizophrenia still depends on clinical observation to date.Without reliable biomarkers,schizophrenia is difficult to detect in its early phase and hence we have proposed this idea.In this work,the EEG signal series are divided into non-linear feature mining,classification and validation,and t-test integrated feature selection process.For this work,19-channel EEG signals are utilized from schizophrenia class and normal pattern.Here,the datasets initially execute the splitting process based on raw 19-channel EEG into 6250 sample point’s sequences.With this process,1142 features of normal and schizophrenia class patterns can be obtained.In other hand,157 features from each EEG patterns are utilized based on Non-linear feature extraction process where 14 principal features can be identified in terms of considering the essential features.At last,the Deep Learning(DL)technique incorporated with an effective optimization technique is adopted for classification process called a Deep Convolutional Neural Network(DCNN)with mayfly optimization algorithm.The proposed technique is implemented into the platform of MATLAB in order to obtain better results and is analyzed based on the performance analysis framework such as accuracy,Signal to Noise Ratio(SNR),Mean Square Error,Normalized Mean Square Error(NMSE)and Loss.Through comparison,the proposed technique is proved to a better technique than other existing techniques. 展开更多
关键词 Deep learning optimization algorithm signal conducting system SCHIZOPHRENIA convolutional neural network mayfly optimization algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部