Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ...Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ) as main raw materials. Nano carbon black (N220) and natural graphite flake ( 〈≤0. 074 mm ) were adopted as the carbon sources. The specimens were treated at 800, 1 000, 1 200 and 1 400 ℃ under coke embedded atmosphere. The effects of additions of nano carbon black and graphite flake on mechanical properties and thermal shock resistance of the specimens were stud- ied. Their mechanical properties were measured by three- point bending test and thermal shock resistance was de- termined by water quenching method. The phase compo- sition of the specimens was analyzed with X-ray diffrac- tion and microstruetures were observed through FESEM. The results reveal that: (1) the strengths of A1203 - C refractories with these two carbon sources show no big differences when coked at lower than 1 000 ℃ ; when coked at over 1 200 ℃ , the strengths of the specimens with graphite added are much higher than those of the specimens containing carbon black due to much more sil- icon carbide whiskers formed; (2) since the nano carbon black has small particle size, they can be filled into in- terstice of Al2O3 particles to form the nano carbon net- work structure, absorbing and relieving the thermal stressgenerated from expansion and contraction and reducing the thermal expansion coefficient of the specimens, thus their thermal shock resistance is better than that of the specimens containing graphite ; ( 3 ) low carbon Al2 O3 - C refractories with good mechanical properties and excellent thermal shock resistance can be prepared with combi- nation of nano carbon black and graphite flake.展开更多
Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical...Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical infrastructure construction.In this work,GO-M18 polycarboxylate compound superplasticizer(GM)were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios.The dispersion of GM in alkaline solution was systematically studied.The phases and functional groups of GM were characterized by XRD and FTIR.The effects of GM on the cement mortar hydration and the formation of microstructure were investigated by measuring the heat of hydration,MIP,TG/DSC,and SEM.The results show that the long-chain structure of the M18 polycarboxylate superplasticizer can increase the interlayer spacing of GO and weaken the force between GO sheets.The modified GO can be uniformly dispersed in the cement slurry.GM can accelerate the early hydration process of cement,which can increase the content of Ca(OH)2 and decrease the grain size.It can optimize the pore size distribution of cement-based materials,increase the density of harmless and less harmful pores,thereby improving mechanical properties.Such methods can transform traditional cement-based materials into stronger,more durable composites,which prolong the life of cement-based materials and reduce the amount of cement used for later maintenance.This provides an idea for achieving sustainability goals in civil engineering.展开更多
We consider the D-dimensional SchrSdinger equation under the hyperbolic potential V0(1 -coth(ar))+ 171 (1 - coth(ar))2. Using a Pekeris-type approximation, the approximate analytical solutions of the problem ...We consider the D-dimensional SchrSdinger equation under the hyperbolic potential V0(1 -coth(ar))+ 171 (1 - coth(ar))2. Using a Pekeris-type approximation, the approximate analytical solutions of the problem are obtained via the supersymmetric quantum mechanics. The behaviors of energy eigenvalues versus dimension are discussed for various quantum numbers. Useful expectation values as well as the oscillator strength are obtained.展开更多
Numerous experimental and theoretical studies on recycled aggregate concrete have been carried out in China in the past 10 years.This paper provides a comprehensive review of the related findings of research on the me...Numerous experimental and theoretical studies on recycled aggregate concrete have been carried out in China in the past 10 years.This paper provides a comprehensive review of the related findings of research on the mechanical properties of RAC in China.The influences of the RCA on the strength and deformation characteristics of concrete,the statistical characteristics for the strength of RAC,fracture energy,stress-strain relationships under uniaxial compression,uniaxial tension as well as pure shear,and the residual strength of RAC after exposure to high temperatures,the bond between RAC and different kinds of steel rebar were also reviewed.Furthermore,some recent studies on the numerical simulation of the failure mechanism for RAC at the meso-structure level were discussed.展开更多
Alpha magnetic spectrometer (AMS) is the first large magndtic spectrometer in space. Its precursor flioht was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by...Alpha magnetic spectrometer (AMS) is the first large magndtic spectrometer in space. Its precursor flioht was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the lnstitute of Electric Engineering, the institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 · sr and an analyzing powerBL 2 of 0.135 T · m2. It works up to 40°C without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.展开更多
文摘Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ) as main raw materials. Nano carbon black (N220) and natural graphite flake ( 〈≤0. 074 mm ) were adopted as the carbon sources. The specimens were treated at 800, 1 000, 1 200 and 1 400 ℃ under coke embedded atmosphere. The effects of additions of nano carbon black and graphite flake on mechanical properties and thermal shock resistance of the specimens were stud- ied. Their mechanical properties were measured by three- point bending test and thermal shock resistance was de- termined by water quenching method. The phase compo- sition of the specimens was analyzed with X-ray diffrac- tion and microstruetures were observed through FESEM. The results reveal that: (1) the strengths of A1203 - C refractories with these two carbon sources show no big differences when coked at lower than 1 000 ℃ ; when coked at over 1 200 ℃ , the strengths of the specimens with graphite added are much higher than those of the specimens containing carbon black due to much more sil- icon carbide whiskers formed; (2) since the nano carbon black has small particle size, they can be filled into in- terstice of Al2O3 particles to form the nano carbon net- work structure, absorbing and relieving the thermal stressgenerated from expansion and contraction and reducing the thermal expansion coefficient of the specimens, thus their thermal shock resistance is better than that of the specimens containing graphite ; ( 3 ) low carbon Al2 O3 - C refractories with good mechanical properties and excellent thermal shock resistance can be prepared with combi- nation of nano carbon black and graphite flake.
基金funded by the National Natural Science Foundation of China(No.51872137)and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical infrastructure construction.In this work,GO-M18 polycarboxylate compound superplasticizer(GM)were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios.The dispersion of GM in alkaline solution was systematically studied.The phases and functional groups of GM were characterized by XRD and FTIR.The effects of GM on the cement mortar hydration and the formation of microstructure were investigated by measuring the heat of hydration,MIP,TG/DSC,and SEM.The results show that the long-chain structure of the M18 polycarboxylate superplasticizer can increase the interlayer spacing of GO and weaken the force between GO sheets.The modified GO can be uniformly dispersed in the cement slurry.GM can accelerate the early hydration process of cement,which can increase the content of Ca(OH)2 and decrease the grain size.It can optimize the pore size distribution of cement-based materials,increase the density of harmless and less harmful pores,thereby improving mechanical properties.Such methods can transform traditional cement-based materials into stronger,more durable composites,which prolong the life of cement-based materials and reduce the amount of cement used for later maintenance.This provides an idea for achieving sustainability goals in civil engineering.
文摘We consider the D-dimensional SchrSdinger equation under the hyperbolic potential V0(1 -coth(ar))+ 171 (1 - coth(ar))2. Using a Pekeris-type approximation, the approximate analytical solutions of the problem are obtained via the supersymmetric quantum mechanics. The behaviors of energy eigenvalues versus dimension are discussed for various quantum numbers. Useful expectation values as well as the oscillator strength are obtained.
基金supported by the National Natural Science Foundation of China (Grant No. 51178340)the Shanghai Science and Technology Committee (Grant No. 10231202000)the New Century Excellent Talentsin China Ministry of Education Project (Grant No. NCET-06-0383)
文摘Numerous experimental and theoretical studies on recycled aggregate concrete have been carried out in China in the past 10 years.This paper provides a comprehensive review of the related findings of research on the mechanical properties of RAC in China.The influences of the RCA on the strength and deformation characteristics of concrete,the statistical characteristics for the strength of RAC,fracture energy,stress-strain relationships under uniaxial compression,uniaxial tension as well as pure shear,and the residual strength of RAC after exposure to high temperatures,the bond between RAC and different kinds of steel rebar were also reviewed.Furthermore,some recent studies on the numerical simulation of the failure mechanism for RAC at the meso-structure level were discussed.
文摘Alpha magnetic spectrometer (AMS) is the first large magndtic spectrometer in space. Its precursor flioht was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the lnstitute of Electric Engineering, the institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 · sr and an analyzing powerBL 2 of 0.135 T · m2. It works up to 40°C without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.