期刊文献+
共找到8,014篇文章
< 1 2 250 >
每页显示 20 50 100
Bunch-length measurement at a bunch-by-bunch rate based on time–frequency-domain joint analysis techniques and its application
1
作者 Hong-Shuang Wang Xing Yang +2 位作者 Yong-Bin Leng Yi-Mei Zhou Ji-Gang Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期165-175,共11页
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si... This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings. 展开更多
关键词 Bunch-by-bunch diagnostic Bunch-length measurement Synchronous phase measurement Joint time–frequency-domain analysis Longitudinal instability
下载PDF
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
2
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 Gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
Design and application of thickness measurement calibration system based on laser displacement sensor
3
作者 SUN Jin YU Zijin 《Baosteel Technical Research》 CAS 2024年第2期39-46,共8页
This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address th... This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address the problems of low precision of traditional contact thickness gauges and radiation risks of radiation-based thickness gauges.First,the measurement method and measurement structure of the thickness calibration system were introduced.Then,the hardware circuit of the thickness system was established based on the STM32 core chip.Finally,the system software was designed to implement system control to filter algorithms and human-computer interaction.Experiments have proven the excellent performance of the differential noncontact thickness measurement calibration system based on laser displacement sensors,which not only considerably improves measurement accuracy but also effectively reduces safety risks during the measurement process.The system offers guiding significance and application value in the field of steel plate production and processing. 展开更多
关键词 steel plate thickness high precision measurement noncontact thickness measurement laser displace-ment sensor
下载PDF
Statistical Channel Modeling for Indoor VLC Communications Based on Channel Measurements
4
作者 Shuo Liu Pan Tang +5 位作者 Jianhua Zhang Yue Yin Yu Tong Baobao Liu Guangyi Liu Liang Xia 《China Communications》 SCIE CSCD 2024年第1期131-147,共17页
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we... Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM. 展开更多
关键词 channel characteristics channel measurement channel modeling 6G spatial lobe VLC
下载PDF
Measurement and Analysis of Vibration Effect of Free-falling Corner Cube Driving Mechanism in Free Fall Absolute Gravimeter
5
作者 ZHANG Bing ZHU Xiaoyi +7 位作者 WU Qiong XUE Bing XING Lili WU Yanxiong SU Peng WANG Xiaolei WANG Yuru WANG Chuhan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期84-86,共3页
The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve ... The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve the interference fringes with the entire fringe to analyze the quantitative influence of vibration on gravity measurements. 展开更多
关键词 laser interference absolute gravimeter gravity measurement vibration influence
下载PDF
Unknown Environment Measurement Mapping by Unmanned Aerial Vehicle Using Kalman Filter-Based Low-Cost Estimated Parallel 8-Beam LIDAR
6
作者 Mohamed Rabik Mohamed Ismail Muthuramalingam Thangaraj +2 位作者 Khaja Moiduddin Zeyad Almutairi Mustufa Haider Abidi 《Computers, Materials & Continua》 SCIE EI 2024年第9期4263-4279,共17页
The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been emplo... The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions. 展开更多
关键词 8 beam LiDAR UAV measurement MAPPING Kalman filter
下载PDF
A Measurement Study of the Ethereum Underlying P2P Network
7
作者 Mohammad ZMasoud Yousef Jaradat +3 位作者 Ahmad Manasrah Mohammad Alia Khaled Suwais Sally Almanasra 《Computers, Materials & Continua》 SCIE EI 2024年第1期515-532,共18页
This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contra... This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contracts,and Web3.Moreover,its application layer language“Solidity”is widely used in smart contracts across different public and private blockchains.To this end,we wrote a new Ethereum client based on Geth to collect Ethereum node information.Moreover,various web scrapers have been written to collect nodes’historical data fromthe Internet Archive and the Wayback Machine project.The collected data has been compared with two other services that harvest the number of Ethereumnodes.Ourmethod has collectedmore than 30% more than the other services.The data trained a neural network model regarding time series to predict the number of online nodes in the future.Our findings show that there are less than 20% of the same nodes daily,indicating thatmost nodes in the network change frequently.It poses a question of the stability of the network.Furthermore,historical data shows that the top ten countries with Ethereum clients have not changed since 2016.The popular operating system of the underlying nodes has shifted from Windows to Linux over time,increasing node security.The results have also shown that the number of Middle East and North Africa(MENA)Ethereum nodes is neglected compared with nodes recorded from other regions.It opens the door for developing new mechanisms to encourage users from these regions to contribute to this technology.Finally,the model has been trained and demonstrated an accuracy of 92% in predicting the future number of nodes in the Ethereum network. 展开更多
关键词 Ethereum measurement ethereum client neural network time series forecasting web-scarping wayback machine blockchain
下载PDF
Quantum block coherence with respect to projective measurements
8
作者 王璞 李忠艳 孟会贤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期213-220,共8页
Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the co... Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory. 展开更多
关键词 quantum coherence compatibility projective measurement quantum block coherence
下载PDF
Fast compressed sensing spectral measurement with adaptive gradient multiscale resolution
9
作者 蓝若明 刘雪峰 +1 位作者 李天平 白成杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期298-304,共7页
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti... We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements. 展开更多
关键词 SPECTROMETER compressed sensing adaptive gradient multiscale resolution fast measurement
下载PDF
Finesse measurement for high-power optical enhancement cavity
10
作者 陆心怡 柳兴 +3 位作者 田其立 王焕 汪嘉俊 颜立新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期414-421,共8页
Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the a... Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications. 展开更多
关键词 optical enhancement cavity finesse measurement cavity ring-down ringing effect
下载PDF
Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
11
作者 卢文韬 夏圣开 +9 位作者 陈爱庆 何康浩 许增博 陈艺涵 汪洋 葛仕宇 安思瀚 吴建飞 马艺菡 杜关祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期186-190,共5页
We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format.The measurement results are compared in detail wi... We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format.The measurement results are compared in detail with simulation,showing a good consistence.Further simulation shows fiber diamond probe brings negligible disturbance to the field under measurement compared to bulk diamond.This method will find important applications ranging from electromagnetic compatibility test and failure analysis of high frequency and high complexity integrated circuits. 展开更多
关键词 quantum precision measurement electromagnetic field diamond NV center quantum metrology
下载PDF
Deep learning-assisted common temperature measurement based on visible light imaging
12
作者 朱佳仪 何志民 +8 位作者 黄成 曾峻 林惠川 陈福昌 余超群 李燕 张永涛 陈焕庭 蒲继雄 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期230-236,共7页
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap... Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields. 展开更多
关键词 convolutional neural network visible light image temperature measurement low-to-medium-range temperatures
下载PDF
Achieving dynamic privacy measurement and protection based on reinforcement learning for mobile edge crowdsensing of IoT
13
作者 Renwan Bi Mingfeng Zhao +2 位作者 Zuobin Ying Youliang Tian Jinbo Xiong 《Digital Communications and Networks》 SCIE CSCD 2024年第2期380-388,共9页
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders... With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm. 展开更多
关键词 Mobile edge crowdsensing Dynamic privacy measurement Personalized privacy threshold Privacy protection Reinforcement learning
下载PDF
Measuring small longitudinal phase shifts via weak measurement amplification
14
作者 徐凯 胡晓敏 +7 位作者 胡孟军 王宁宁 张超 黄运锋 柳必恒 李传锋 郭光灿 张永生 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期105-111,共7页
Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted ... Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection. 展开更多
关键词 weak measurement phase estimation quantum optics
下载PDF
Design of weak current measurement system and research on temperature impact
15
作者 Chu-Xiang Zhao San-Gang Li +8 位作者 Rong-Rong Su Li Yang Ming-Zhe Liu Qing-Yue Xue Shan Liao Zhi Zhou Qing-Shan Tan Xian-Guo Tuo Yi Cheng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期46-56,共11页
A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filterin... A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filtering algorithm to effectively filter out noise and minimize interference in the measurement results.Testing conducted under normal temperature conditions has demonstrated the system's high precision performance.However,it was observed that temperature variations can affect the measurement performance.Data were collected across temperatures ranging from -20 to 70℃,and a temperature correction model was established through linear regression fitting to address this issue.The feasibility of the temperature correction model was confirmed at temperatures of -5 and 40℃,where relative errors remained below 0.1% after applying the temperature correction.The research indicates that the designed measurement system exhibits excellent temperature adaptability and high precision,making it particularly suitable for measuring weak currents. 展开更多
关键词 Weak current measurement system Neutron ionization chamber Kalman filter algorithm Temperature correction model
下载PDF
A fast forward computational method for nuclear measurement using volumetric detection constraints
16
作者 Qiong Zhang Lin-Lv Lin 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期47-63,共17页
Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sour... Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method. 展开更多
关键词 Nuclear measurement Fast forward computation Volumetric constraints
下载PDF
Research progress on micro-force measurement of a hydrate particle system
17
作者 Qiang Luo Wei Li +3 位作者 Zhi-Hui Liu Feng Wang Zhi-Chao Liu Fu-Long Ning 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2169-2183,共15页
It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate... It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate particles and reservoir particles are essential factors that control the behaviors of clathrate hydrates in different applications.In this review,we summarize the typical micro-force measurement apparatus and methods utilized to study hydrate particle systems.In addition,the adhesion test results,the related understandings,and the applied numerical calculation models are systematically discussed. 展开更多
关键词 Clathrate hydrates Hydrate particle Micro-force measurements ADHESION INTERACTIONS
下载PDF
A novel indirect optical method for rock stress measurement using microdeformation field analysis
18
作者 Yujie Feng Peng-Zhi Pan +2 位作者 Zhaofeng Wang Xufeng Liu Shuting Miao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3616-3628,共13页
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r... Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field. 展开更多
关键词 Rock stress measurement Optical technology Digital image correlation(DIC)technology Micro-deformation field
下载PDF
An extended state observer with adjustable bandwidth for measurement noise
19
作者 ZHANG Shihua QI Xiaohui YANG Sen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期233-241,共9页
In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates... In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO. 展开更多
关键词 extended state observer(ESO) boundedness and convergence adjustable bandwidth measurement noise
下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
20
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部