Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained...Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For comparison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.展开更多
Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic condi...Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism.Subsequently,based on the modified pseudo-rigid-body model,the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics.Finally,in combination with the finite element analysis software ANSYS,the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples.From the simulation results,the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size,section parameter,and characteristic parameter of material on mechanisms.The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms,the improvement of their dynamic properties and the expansion of their application range.展开更多
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers...A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.展开更多
Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed th...Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content(up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the Ti B2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/Ti B2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading.展开更多
To avoid interference from unexpected background noises and obtain high fidelity voice signal,acoustic sensors with high sensitivity,flat frequency response,and high signal-to-noise ratio(SNR)are urgently needed for v...To avoid interference from unexpected background noises and obtain high fidelity voice signal,acoustic sensors with high sensitivity,flat frequency response,and high signal-to-noise ratio(SNR)are urgently needed for voice recognition.Grapheneoxide(GO)has received extensive attention due to its advantages of controllable thickness and high fracture strength.However,low mechanical sensitivity(SM)introduced by undesirable initial stress limits the performance of GO material in the field of voice recognition.To alleviate the aforementioned issue,GO diaphragm with annular corrugations is proposed.By means of the reusable copper mold machined by picosecond laser,the fabrication and transfer of corrugated GO diaphragm are realized,thus achieving a Fabry–Perot(F–P)acoustic sensor.Benefitting from the structural advantage of the corrugated GO diaphragm,our F–P acoustic sensor exhibits high S_(M)(43.70 nm/Pa@17 kHz),flat frequency response(−3.2 to 3.7 dB within 300–3500 Hz),and high SNR(76.66 dB@1 kHz).In addition,further acoustic measurements also demonstrate other merits,including an excellent frequency detection resolution(0.01 Hz)and high time stability(output relative variation less than 6.7% for 90 min).Given the merits presented before,the fabricated F–P acoustic sensor with corrugated GO diaphragm can serve as a high-fidelity platform for acoustic detection and voice recognition.In conjunction with the deep residual learning framework,high recognition accuracy of 98.4%is achieved by training and testing the data recorded by the fabricated F–P acoustic sensor.展开更多
For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures...For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures of 700-850 °C and strain rates of 0.01-10 s-1. And at the true strain of 0.15, 0.35 and 0.55, respectively, the responses of strain-rate sensitivity, power dissipation efficiency and instability parameter to temperature and strain rate were studied. Instability maps and power dissipation maps were superimposed to form processing maps, which reveal the determinate regions where individual metallurgical processes occur and the limiting conditions of flow instability regions. Furthermore, the optimal processing parameters for bulk metal working are identified clearly by the processing maps.展开更多
A series of N-substituted acrylamide monomers and the temperature sensitive hydrogels of their copolymer with N, N'-methylene-bis -acrylamide (Bis) have been synthesized. The effects of monomer structures, composi...A series of N-substituted acrylamide monomers and the temperature sensitive hydrogels of their copolymer with N, N'-methylene-bis -acrylamide (Bis) have been synthesized. The effects of monomer structures, composition of the initial monomer mixture, polymerization temperature, the extent of ionization of the network and the presence of acid, base, salt or organic compound on the formation and the swelling characteristics of the temperature sensitive hydrogels have been systematically studied. The mechanism of the temperature sensitive phase transformation of the hydrogels was also investigated.展开更多
When performing shallow tunnel construction,settlements on the ground surface often cannot be prevented.Anticipating these sur-face displacements is only possible with profound knowledge of the constitutive parameters...When performing shallow tunnel construction,settlements on the ground surface often cannot be prevented.Anticipating these sur-face displacements is only possible with profound knowledge of the constitutive parameters of the surrounding soil.Performing inverse analysis on the basis of in situ settlement data is an effcient method for obtaining such information.However,during this process,con-sidering which measurement arrangement can provide the most reliable results is generally neglected.This aspect is addressed in this study by applying the so-called“optimal experimental design”to the mechanized tunnelingfield.A global sensitivity analysis(GSA)isfirstly performed to determine the most relevant model parameters to be identified via back analysis,by employing the considered numerical model and experimental data.Furthermore,the GSA results are utilized to determine where and when measurements should be performed to minimize uncertainty in the identified constitutive parameters.The optimal experimental design(OED)concept is fur-ther applied to evaluate the observation set-up effciency for damage mitigation measures within a representative synthetic example of a tunneling project passing beneath an existing building.Parameter identification based on synthetic noisy experiments is performed to validate the presented method for optimal experimental design.Thus,the soil stiffness and strength parameters are identified according to both an intuitive and the elaborated method,employing the proposed OED strategy and experimental designs,making it possible to assess the feasibility of the OED results.展开更多
Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis m...Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials,such as noble metal nanoparticles(NPs),metal oxides(MOS),conductive polymers,other new 2D materials.The methods of doping,modification,and photoexcitation can effectively improve the gas-sensing properties of 2D materials.The sensitive mechanisms of heterojunction,Schottky junction,and photoexcitation in 2D material sensors are discussed in detail.This paper discusses the application prospects of 2D materials in wearable gas sensors,food safety,and self-powered sensing,and provides ideas for further applications in environmental quality monitoring and disease diagnosis.In addition,the opportunities and challenges for gas sensors based on 2D materials are also discussed.展开更多
基金The project was supported by Equipment Pre-research Key Laboratory Fund(No.6142020305)The authors would like to thank Shiyanjia Lab(www.shiyanjia.com)for the support of XPS test.
文摘Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For comparison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant Nos.2014QNB18,2015XKMS022)National Natural Science Foundation of China(Grant No.51475456)+1 种基金Priority Academic Programme Development of Jiangsu Higher Education Institutionsthe Visiting Scholar Foundation of China Scholarship Council
文摘Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism.Subsequently,based on the modified pseudo-rigid-body model,the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics.Finally,in combination with the finite element analysis software ANSYS,the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples.From the simulation results,the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size,section parameter,and characteristic parameter of material on mechanisms.The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms,the improvement of their dynamic properties and the expansion of their application range.
基金Funded by the National Natural Science Foundation of China(51572208)the 111 Project(B13035)+1 种基金the National Natural Science Foundation of Hubei Province(2014CFB257 and 2014CFB258)the Fundamental Research Funds for the Central Universities(WUT:2015-III-059)
文摘A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41.
基金Funded in part by the Fundamental Research Funds for the Central Universities,SCUT(2013ZZ014)the Natural Science Foundation of Guangdong Province(No.S2013010013269)+1 种基金the Doctoral Program Foundation of Institutions of Higher Education of China(No.20130172120027)the National Engineering Research Center Open Fund of SCUT(2011007B)
文摘Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content(up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the Ti B2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/Ti B2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading.
基金supported by the National Natural Science Foundation of China(No.62173021)Joint Funds of the National Natural Science Foundation of China(No.U23A20638)+1 种基金Beijing Natural Science Foundation(No.4212039)Aviation Science Foundation of China(No.2020Z073051002).
文摘To avoid interference from unexpected background noises and obtain high fidelity voice signal,acoustic sensors with high sensitivity,flat frequency response,and high signal-to-noise ratio(SNR)are urgently needed for voice recognition.Grapheneoxide(GO)has received extensive attention due to its advantages of controllable thickness and high fracture strength.However,low mechanical sensitivity(SM)introduced by undesirable initial stress limits the performance of GO material in the field of voice recognition.To alleviate the aforementioned issue,GO diaphragm with annular corrugations is proposed.By means of the reusable copper mold machined by picosecond laser,the fabrication and transfer of corrugated GO diaphragm are realized,thus achieving a Fabry–Perot(F–P)acoustic sensor.Benefitting from the structural advantage of the corrugated GO diaphragm,our F–P acoustic sensor exhibits high S_(M)(43.70 nm/Pa@17 kHz),flat frequency response(−3.2 to 3.7 dB within 300–3500 Hz),and high SNR(76.66 dB@1 kHz).In addition,further acoustic measurements also demonstrate other merits,including an excellent frequency detection resolution(0.01 Hz)and high time stability(output relative variation less than 6.7% for 90 min).Given the merits presented before,the fabricated F–P acoustic sensor with corrugated GO diaphragm can serve as a high-fidelity platform for acoustic detection and voice recognition.In conjunction with the deep residual learning framework,high recognition accuracy of 98.4%is achieved by training and testing the data recorded by the fabricated F–P acoustic sensor.
基金Project(CSTC2009BA4065) supported by the Chongqing Natural Science Foundation,China
文摘For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures of 700-850 °C and strain rates of 0.01-10 s-1. And at the true strain of 0.15, 0.35 and 0.55, respectively, the responses of strain-rate sensitivity, power dissipation efficiency and instability parameter to temperature and strain rate were studied. Instability maps and power dissipation maps were superimposed to form processing maps, which reveal the determinate regions where individual metallurgical processes occur and the limiting conditions of flow instability regions. Furthermore, the optimal processing parameters for bulk metal working are identified clearly by the processing maps.
基金Sponsored by the National Natural Science Foundation of China
文摘A series of N-substituted acrylamide monomers and the temperature sensitive hydrogels of their copolymer with N, N'-methylene-bis -acrylamide (Bis) have been synthesized. The effects of monomer structures, composition of the initial monomer mixture, polymerization temperature, the extent of ionization of the network and the presence of acid, base, salt or organic compound on the formation and the swelling characteristics of the temperature sensitive hydrogels have been systematically studied. The mechanism of the temperature sensitive phase transformation of the hydrogels was also investigated.
文摘When performing shallow tunnel construction,settlements on the ground surface often cannot be prevented.Anticipating these sur-face displacements is only possible with profound knowledge of the constitutive parameters of the surrounding soil.Performing inverse analysis on the basis of in situ settlement data is an effcient method for obtaining such information.However,during this process,con-sidering which measurement arrangement can provide the most reliable results is generally neglected.This aspect is addressed in this study by applying the so-called“optimal experimental design”to the mechanized tunnelingfield.A global sensitivity analysis(GSA)isfirstly performed to determine the most relevant model parameters to be identified via back analysis,by employing the considered numerical model and experimental data.Furthermore,the GSA results are utilized to determine where and when measurements should be performed to minimize uncertainty in the identified constitutive parameters.The optimal experimental design(OED)concept is fur-ther applied to evaluate the observation set-up effciency for damage mitigation measures within a representative synthetic example of a tunneling project passing beneath an existing building.Parameter identification based on synthetic noisy experiments is performed to validate the presented method for optimal experimental design.Thus,the soil stiffness and strength parameters are identified according to both an intuitive and the elaborated method,employing the proposed OED strategy and experimental designs,making it possible to assess the feasibility of the OED results.
基金the National Natural Science Foundation of China(No.51777215)the Original Innovation Special Project of Science and Technology Plan of Qingdao West Coast New Area(No.2020-85)the Special Foundation of the Taishan Scholar Project.
文摘Two-dimensional(2D)nanomaterials have been widely used in gas sensing due to their large specific surface area,high surface reactivity,and excellent gas adsorption properties.This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials,such as noble metal nanoparticles(NPs),metal oxides(MOS),conductive polymers,other new 2D materials.The methods of doping,modification,and photoexcitation can effectively improve the gas-sensing properties of 2D materials.The sensitive mechanisms of heterojunction,Schottky junction,and photoexcitation in 2D material sensors are discussed in detail.This paper discusses the application prospects of 2D materials in wearable gas sensors,food safety,and self-powered sensing,and provides ideas for further applications in environmental quality monitoring and disease diagnosis.In addition,the opportunities and challenges for gas sensors based on 2D materials are also discussed.