The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested tha...The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested that the Indian Ocean(IO)SST forcing and soil moisture anomaly over the Indochina Peninsula(ICP)were responsible for this unexpected event.However,the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event,especially their linkage with atmospheric circulation changes,remain unclear.By using observations and numerical simulations,this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020.Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds.The intensification of the warm condition further magnified the land thermal effects,which in turn facilitated the westward extension of the western North Pacific subtropical high(WNPSH)in June‒July.The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB,thereby contributing to the 2020 mei-yu.In contrast,the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture.The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model.Their synergistic impacts yield a notable 32%increase in YRB precipitation.Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.展开更多
Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth genera...Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth generation of the European Centre for Medium-Range Weather Forecasts(ERA5)reanalysis dataset.Our results show that the vertical structure of LLJs is characterized by a predominance of boundary layer jets(BLJs)concentrated at heights of 900-1200 m.The BLJs occur most frequently at 2300 LST(LST=UTC+8 hours)but are strongest at 0200 LST,with composite wind velocities>14 m s^(-1).Synoptic-system-related LLJs(SLLJs)occur most frequently at 0800 LST but are strongest at 1100LST,with composite wind velocities>12 m s^(-1).Both BLJs and SLLJs are characterized by a southwesterly wind direction,although the wind direction of SLLJs is more westerly,and northeasterly SLLJs occur more frequently than northeasterly BLJs.When Wuhan is south of the mei-yu front,the westward extension of the northwest Pacific subtropical high intensifies,and the low-pressure system in the eastern Tibetan Plateau strengthens,favoring the formation of LLJs,which are closely related to precipitation.The wind speeds on rainstorm days are greater than those on LLJ days.Our analysis of four typical heavy precipitation events shows the presence of LLJs at the center of the precipitation and on its southern side before the onset of heavy precipitation.BLJs were shown to develop earlier than SLLJs.展开更多
During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and t...During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and there are altogether five cycles.It is found that the biweekly rainfall cycle mainly arises from the collaborative effects of biweekly variabilities from both the tropics and extratropics.As for the tropics,the biweekly meridional march and retreat of the western Pacific subtropical high(WPSH)is particularly evident.As for the extratropics,geopotential height anomalies near Lake Baikal are active.The former is attributed to the intensified biweekly activity of the southwest-northeast oriented EastAsian Pacific wave train(EAP)originating from the tropical western Pacific,while the latter is associated with the biweekly activities of the eastward propagating Eurasia mid-high latitudinal wave train and the westward propagating North Pacific wave train.Why the biweekly activities of these wave trains intensified is further diagnosed from the perspective of thermodynamical forcing and also from the modulation of interannual background on intraseasonal variability.It is found that the strongest recorded convection anchoring over the tropical western Indian Ocean(IO)triggers anomalous descent over the tropical western Pacific,which modulates the biweekly activity of the EAP.Meanwhile,the anomalous diabatic heating over the IO causes changes of the meridional thermodynamic contrast across the IO to the high latitudes,which modulates the extratropical wave trains.A further diagnosis of barotropic kinetic energy conversion suggests that the active occurrence of two extratropical biweekly wave trains is attributed to the increased efficiency of energy conversion from basic flow.The westward propagation of the extratropical North Pacific wave train is attributed to the weakened and northshifted upper-level westerly,which is caused by the SST warmth near the Kuroshio extension.展开更多
In this paper, a typical mei-yu front process with heavy rainfall from June 12 to 15 in 1998 is analyzed. The results show that the mei-yu front is a front system which consists of an iso-theta(e) dense area with stro...In this paper, a typical mei-yu front process with heavy rainfall from June 12 to 15 in 1998 is analyzed. The results show that the mei-yu front is a front system which consists of an iso-theta(e) dense area with strong horizontal gradient, a deep-convective cloud tower band, a passageway transporting warm and moist air flow from the summer monsoon surge in the mid and low levels to the south of the mei-yu front, and a migrating synoptic scale trough to the north of the mei-yu front, which transports cold and dry air southward in the mid and upper levels. The maintenance of the mei-yu front is realized by: (1) is a positive feedback between the moist physical process enhancing frontogenesis and the development of the strong convective system in front of the mei-yu front; (2) the sustaining system to the north of the mei-yu front which is a migrating synoptic scale trough transporting cold and dry air to the mei-yu front and positive vorticity to the mesoscale system in front of the mei-yu front.展开更多
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high t...The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain.The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southem flank of the TP.Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale.The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific.The SCAP anomaly has an independent effect and may directly modulate the land surface heating and,consequently,vertical motion over the western TP,and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation.Through a zonal vertical circulation over the tropics and a Kelvin wave-type response,anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool,which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.展开更多
Diurnal variations of two mountain-plain solenoid (MPS) circulations associated with "first-step" terrain [Tibetan Plateau (TP)] and "second-step" terrain (high mountains between the TP and "east plains") ...Diurnal variations of two mountain-plain solenoid (MPS) circulations associated with "first-step" terrain [Tibetan Plateau (TP)] and "second-step" terrain (high mountains between the TP and "east plains") in China and their influence on the south west vortex (SWV) and the mei-yu front vortex (MYFV) were investigated via a semi-idealized mesoscale numerical model [Weather Research and Forecasting (WRF)] simulation integrated with ten-day average fields (mei-yu period of 1-10 July 2007). The simulations successfully reproduced two MPS circulations related to first and second-step terrain, diurnal vari- ations from the eastern edge of the TP to the Yangtze River-Huaihe River valleys (YHRV), and two precipitation maximum centers related to the SWV, MYFV. Analyses of the averaged final seven-day simulation showed the different diurnal peaks of precipitation at different regions: from the aftemoon to early evening at the eastern edge of the TP; in the early evening to the next early morning in the Sichuan Basin (SCB); and in the late evening to the next early morning over the mei-yu front (MYF). Analyses of individual two-day cases confirmed that the upward branches of the nightlime MPS circulations enhanced the precipitation over the SWV and the MYFV and revealed that the eastward extension of the SWV and its con vection were conducive to triggering the MYFVs. The eastward propagation of a rainfall streak from the eastern edge of the TP to the eastern coastal region was primarily due to a series of convective activities of several systems from west to east, including the MPS between the TP and SCB, the SWV, the MPS between second-step terrain and tile east plains, and the MYFV.展开更多
This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both...This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both mei-yu precipitation and mei-yu duration are characterized by significant decadal variability. Their decadal components are closely correlated with a triple mode of North Atlantic SSTA in the preceding winter. Regression analysis demonstrates that the wintertime North Atlantic SSTA may impose a delayed impact on East Asia Summer Monsoon (EASM) circulation and mei-yu on the decadal timescale. The persistency of SSTA plays an important role during this course. The triple SSTA mode can persist from winter until late spring. It is suggested that the springtime SSTA may excite a stationary wave-train propagating from west Eurasia to East Asia and exert an impact on mei-yu.展开更多
The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002...The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3 h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MaCS. Several convection lines developed during the evolution of the MaCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.展开更多
A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dim...A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dimension Data Assimilation). The analysis shows that seven weak small mesoscale vortexes of tens of kilometers, correspondent to surface low trough or mesoscale centers, in the planetary boundary layer (PBL) in the mei-yu front were heavily responsible for the heavy rainfall. Sometimes, several weak small-scale vortexes in the PBL could form a vortex group, some of which would weaken locally, and some would develop to be a meso-α-scale low vortex through combination. The initial dynamical triggering mechanism was related to two strong currents: one was the northeast flow in the PBL at the rear of the mei-yu front, the vortexes occurred exactly at the side of the northeast flow; and the other was the strong southwest low-level jet (LLJ) in front of the Mei-yu front, which moved to the upper of the vortexes. Consequently, there were notable horizontal and vertical wind shears to form positive vorticity in the center of the southwest LLJ. The development of mesoscale convergence in the PBL and divergence above, as well as the vertical positive vorticity column, were related to the small wind column above the nose-shaped velocity contours of the northeast flow embedding southwestward in the PBL, which intensified the horizontal wind shear and the positive vorticity column above the vortexes, baroclinicity and instability.展开更多
Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on no...Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4- 6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective instability and the moist physics convective system indicates two peaks, which correspond with inside the mei-yu front, and related to moist The error growth for the mei-yu heavy rainfall is concentrated convective instability and scale interaction.展开更多
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulate...The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.展开更多
The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rai...The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.展开更多
The aim of this study was to investigate changes in the relationship between mei-yu rainfall over East China and La Nifia events in the late 1970s, a period concurrent with the Pacific climate shift, using meiyu rainf...The aim of this study was to investigate changes in the relationship between mei-yu rainfall over East China and La Nifia events in the late 1970s, a period concurrent with the Pacific climate shift, using meiyu rainfall data and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. This relationship was modulated by the climate shift: Before the 1977/1978 climate shift and after the 1992/1993 climate shift, mei-yu rainfall levels were above normal in most La Nifia years, whereas during the period 1979 1991, mei-yu rainfall was usually below normal levels in La Nifia years. Both composite analyses and results from an atmospheric general circulation model show remarkable detail in terms of La Nifia's impacts on mei-yu rainfall in the late 1970s due to the change in the mean climatic state over the tropical Pacific. After the late 1970s, the tropical Pacific SSTs were warmer, and the mean state of low-level anticyclone circulation over the western North Pacific (WNP) weakened. Superimposed on La Nifia-related cyclonic anomaly over the WNP, anticyclonic circulation weakened. Prior to the late 1970s, the mean state of low-level anticyclone circulation over the WNP was stronger and was less affected by La Nifia-related anomalous cyclones. Anticyclone circulation may have brought moisture to the Yangtze River valley, leading to above-normal rainfall.展开更多
The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection wer...The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection were investigated. During the both flooding cases, although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere, the phase of the Rossby wave train is different over Eurasian continent. During flooding in the Huaihe River valley, only one single blocking anticyclone is located over Baikal Lake. In contrast, during flooding in the Yangtze River valley, there are two blocking anticyclones. One is over the Ural Mountains and the other is over Northeast Asia. In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases, but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding. Fhrthermore, abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula. However, the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific. Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation. While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south, along with abundant rainfall.展开更多
The paper presents one diagnosis of baroclinity and the coupling of jets during the developing process of a cyclone that occurred on the mei-yu (Baiu) front around the end of the second stage of the mei-yu (Baiu) in 1...The paper presents one diagnosis of baroclinity and the coupling of jets during the developing process of a cyclone that occurred on the mei-yu (Baiu) front around the end of the second stage of the mei-yu (Baiu) in 1998. Results have shown that: (1) The advantageous changes of upper-level large-scale circulation caused the appearance and maintenance of the coupling between the upper-level jet (ULJ) and lower-level jet (LLJ) over the cyclone's area. The coupling of jets in this case possesses some different characteristics from previous cases. Moreover, the coupling between the ULJ and LLJ caused the intensification of both lower-level convergence and upper-level divergence, which was favorable for the development of this cyclone. (2) From the analysis of the voricity budget, the role of lower-level convergence in the development of the cyclone was emphasized. Divergent wind in the lower troposphere was a direct contributor to the development of the cyclone. (3) During the development of the cyclone, cold air and warm air were active over the cyclone's domain. Although this cyclone occurred at the mei-yu (Baiu) front, its development assumed baroclinity to a certain extent, which was just the main difference between this kind of cyclone and the first kind of low which is usually barotropic (or quasi-barotropic). (4) In recent years, studies on mei-yu front lows have paid more attention to the lower troposphere. In this paper, the analysis of the energy budget further supports this point: the certain effect of baroclinity forcing in the upper troposphere on mei-yu front lows cannot be ignored.展开更多
An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after ve...An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after verifying the ability of a tangent linear and adjoint model to describe small perturbations in the nonlinear model, the sensitivity gradient analysis is implemented in detail. The sensitivity gradient with respect to different physical fields are not uniform in intensity, simulation error is most sensitive to the vapor mixed ratio. The localization and consistency are obvious characters of horizontal distribution of the sensitivity gradient, which is useful for the practical implementation of adaptive observation. The sensitivity region tilts to the northwest with height increasing; the singular vector calculation proves that this tilting characterizes a quick-growing structure, which denotes that using the leading singular vectors to decide the adaptive observation region is proper. When connected with simulation of a mesoscale low on the mei-yu Front, the sensitivity gradient has the following physical characters: the obvious sensitive region is mesoscale, concentrated in the middle-upper troposphere, and locates around the key system; and the sensitivity gradient of different physical fields correlates dynamically.展开更多
The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961.In this work,we comprehensively analyzed the mechanism of the extreme mei-yu season in 202...The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961.In this work,we comprehensively analyzed the mechanism of the extreme mei-yu season in 2020,with focuses on the combined effects of the Madden-Julian Oscillation(MJO)and the cooperative influence of the Pacific and Indian Oceans in 2020 and from a historical perspective.The prediction and predictability of the extreme mei-yu are further investigated by assessing the performances of the climate model operational predictions and simulations.It is noted that persistent MJO phases 1−2 during June−July 2020 played a crucial role for the extreme mei-yu by strengthening the western Pacific subtropical high.Both the development of La Niña conditions and sea surface temperature(SST)warming in the tropical Indian Ocean exerted important influences on the long-lived MJO phases 1−2 by slowing down the eastward propagation of the MJO and activating convection related to the MJO over the tropical Indian Ocean.The spatial distribution of the 2020 mei-yu can be qualitatively captured in model real-time forecasts with a one-month lead.This can be attributed to the contributions of both the tropical Indian Ocean warming and La Niña development.Nevertheless,the mei-yu rainfall amounts are seriously underestimated.Model simulations forced with observed SST suggest that internal processes of the atmosphere play a more important role than boundary forcing(e.g.,SST)in the variability of mei-yu anomaly,implying a challenge in quantitatively predicting an extreme mei-yu season,like the one in 2020.展开更多
The summer of 2020 recorded a record-breaking flood due to excessive mei-yu rain falling over the Yangtze River Valley(YRV).Using the Lagrangian model FLEXPART,this paper investigates moisture sources and transport pr...The summer of 2020 recorded a record-breaking flood due to excessive mei-yu rain falling over the Yangtze River Valley(YRV).Using the Lagrangian model FLEXPART,this paper investigates moisture sources and transport processes behind this extreme event.Based on climate data from 1979 to 2019,the air-particle(an infinitesimally small air parcel)trajectories reaching the YRV show sectors that correspond to five main moisture sources:the Indian monsoon region(IND,27.5%of the total rainfall),the local evaporation(27.4%),the Western Pacific Ocean(WPO,21.3%),the Eurasian continent(8.5%)and Northeast Asia(4.4%).In the 2020 mei-yu season,moisture from all source regions was above normal except that from Northeast Asia.A record-breaking moisture source from the IND and WPO dominated this extreme mei-yu flood in 2020,which was 1.5 and 1.6 times greater than the climate mean,respectively.This study reveals a significant relationship between the moisture source with three moisture transport processes,i.e.,trajectory density,moisture content,and moisture uptake of air-particles.A broad anomalous anticyclonic circulation over the Indo-Northwestern Pacific(Indo-NWP)provides a favorable environment to enhance the moisture transport from the IND and WPO into the YRV.In the 2020 mei-yu season,a record-breaking Indo-NWP anomalous anticyclonic circulation contributed to a higher trajectory density as well as higher moisture content and moisture uptake of air-particles from the IND and WPO regions.This collectively resulted in unprecedented moisture transport from source origins,thus contributing to the mei-yu flood over the YRV in 2020.展开更多
The mesoscale moist adjoint sensitivities related to the initiation of mesoscale convective systems (MCSs) are evaluated for a mei-yu heavy rainfall event. The sensitivities were calculated on a realistic background...The mesoscale moist adjoint sensitivities related to the initiation of mesoscale convective systems (MCSs) are evaluated for a mei-yu heavy rainfall event. The sensitivities were calculated on a realistic background gained from a four-dimensional variational data assimilation of precipitation experiment to make the sensitivity computation possible and reasonable within a strong moist convective event at the mesoscale. The results show that the computed sensitivities at the mesoscale were capable of capturing the factors affecting MCS initiation. The sensitivities to the initial temperature and moisture are enhanced greatly by diabatic processes, especially at lower levels, and these sensitivities are much larger than those stemming from the horizontal winds, which implies that initiation of MCSs is more sensitive to low-level temperature and moisture perturbations rather than the horizontal winds. Moreover, concentration of sensitivities at low levels reflects the characteristics of the mei-yu front. The results provide some hints about how to improve quantitative precipitation forecasts of mei-yu heavy rainfall, such as by conducting mesoscale targetted observations via the adjoint-based method to reduce the low-level errors in the initial temperature and moisture.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFF0801603).
文摘The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested that the Indian Ocean(IO)SST forcing and soil moisture anomaly over the Indochina Peninsula(ICP)were responsible for this unexpected event.However,the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event,especially their linkage with atmospheric circulation changes,remain unclear.By using observations and numerical simulations,this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020.Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds.The intensification of the warm condition further magnified the land thermal effects,which in turn facilitated the westward extension of the western North Pacific subtropical high(WNPSH)in June‒July.The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB,thereby contributing to the 2020 mei-yu.In contrast,the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture.The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model.Their synergistic impacts yield a notable 32%increase in YRB precipitation.Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.
基金supported by the National Natural Science Foundation of China(Grant Nos.42230612,41620104009,41705019,42075186,and 41975058)the Projects of the S&T Development Foundation of the Hubei Meteorological Bureau(Grants No.2021Q04 and 2020Y04)。
文摘Here,we analyze the characteristics and the formation mechanisms of low-level jets(LLJs)in the middle reaches of the Yangtze River during the 2010 mei-yu season using Wuhan station radiosonde data and the fifth generation of the European Centre for Medium-Range Weather Forecasts(ERA5)reanalysis dataset.Our results show that the vertical structure of LLJs is characterized by a predominance of boundary layer jets(BLJs)concentrated at heights of 900-1200 m.The BLJs occur most frequently at 2300 LST(LST=UTC+8 hours)but are strongest at 0200 LST,with composite wind velocities>14 m s^(-1).Synoptic-system-related LLJs(SLLJs)occur most frequently at 0800 LST but are strongest at 1100LST,with composite wind velocities>12 m s^(-1).Both BLJs and SLLJs are characterized by a southwesterly wind direction,although the wind direction of SLLJs is more westerly,and northeasterly SLLJs occur more frequently than northeasterly BLJs.When Wuhan is south of the mei-yu front,the westward extension of the northwest Pacific subtropical high intensifies,and the low-pressure system in the eastern Tibetan Plateau strengthens,favoring the formation of LLJs,which are closely related to precipitation.The wind speeds on rainstorm days are greater than those on LLJ days.Our analysis of four typical heavy precipitation events shows the presence of LLJs at the center of the precipitation and on its southern side before the onset of heavy precipitation.BLJs were shown to develop earlier than SLLJs.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2018YFA0606403)the National Natural Science Foundation of China(Grant Nos.41731177 and 41790473)。
文摘During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and there are altogether five cycles.It is found that the biweekly rainfall cycle mainly arises from the collaborative effects of biweekly variabilities from both the tropics and extratropics.As for the tropics,the biweekly meridional march and retreat of the western Pacific subtropical high(WPSH)is particularly evident.As for the extratropics,geopotential height anomalies near Lake Baikal are active.The former is attributed to the intensified biweekly activity of the southwest-northeast oriented EastAsian Pacific wave train(EAP)originating from the tropical western Pacific,while the latter is associated with the biweekly activities of the eastward propagating Eurasia mid-high latitudinal wave train and the westward propagating North Pacific wave train.Why the biweekly activities of these wave trains intensified is further diagnosed from the perspective of thermodynamical forcing and also from the modulation of interannual background on intraseasonal variability.It is found that the strongest recorded convection anchoring over the tropical western Indian Ocean(IO)triggers anomalous descent over the tropical western Pacific,which modulates the biweekly activity of the EAP.Meanwhile,the anomalous diabatic heating over the IO causes changes of the meridional thermodynamic contrast across the IO to the high latitudes,which modulates the extratropical wave trains.A further diagnosis of barotropic kinetic energy conversion suggests that the active occurrence of two extratropical biweekly wave trains is attributed to the increased efficiency of energy conversion from basic flow.The westward propagation of the extratropical North Pacific wave train is attributed to the weakened and northshifted upper-level westerly,which is caused by the SST warmth near the Kuroshio extension.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDB40000000]the National Natural Science Foundation of China[grant numbers 42175076 and 42288101].
文摘In this paper, a typical mei-yu front process with heavy rainfall from June 12 to 15 in 1998 is analyzed. The results show that the mei-yu front is a front system which consists of an iso-theta(e) dense area with strong horizontal gradient, a deep-convective cloud tower band, a passageway transporting warm and moist air flow from the summer monsoon surge in the mid and low levels to the south of the mei-yu front, and a migrating synoptic scale trough to the north of the mei-yu front, which transports cold and dry air southward in the mid and upper levels. The maintenance of the mei-yu front is realized by: (1) is a positive feedback between the moist physical process enhancing frontogenesis and the development of the strong convective system in front of the mei-yu front; (2) the sustaining system to the north of the mei-yu front which is a migrating synoptic scale trough transporting cold and dry air to the mei-yu front and positive vorticity to the mesoscale system in front of the mei-yu front.
基金the support of the National Natural Science Foundation of China (Grant No. 41271434)the National Key Technologies R&D Program in the 12th Five Year Plan of China (Grant No. 2012BAH32B03)+6 种基金the Hong Kong GRF (Grant No. CUHK 457212)the ITF (Grant No. GHP/002/11GD)the support of the Hong Kong Research Grants Council (Grant No. CUHK 403612)the National Natural Science Foundation of China (Grant Nos. 41275081 and 41228006)the support of the National Natural Science Foundation of China (Grant Nos. 41375090 and 41221064)the Special Project of the National International Science and Technology Cooperation of China (Grant No. 2011DFG23450)the Basic Research Fund of CAMS (Grant No. 2013Z002)
文摘The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain.The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southem flank of the TP.Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale.The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific.The SCAP anomaly has an independent effect and may directly modulate the land surface heating and,consequently,vertical motion over the western TP,and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation.Through a zonal vertical circulation over the tropics and a Kelvin wave-type response,anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool,which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.
基金jointly sponsored by a project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(Grant No.2011LASWA15)the National Key Basic Research and Development Project of China(Grant No.2012CB417201)the National Natural Science Foundation of China(Grant No.40930951)
文摘Diurnal variations of two mountain-plain solenoid (MPS) circulations associated with "first-step" terrain [Tibetan Plateau (TP)] and "second-step" terrain (high mountains between the TP and "east plains") in China and their influence on the south west vortex (SWV) and the mei-yu front vortex (MYFV) were investigated via a semi-idealized mesoscale numerical model [Weather Research and Forecasting (WRF)] simulation integrated with ten-day average fields (mei-yu period of 1-10 July 2007). The simulations successfully reproduced two MPS circulations related to first and second-step terrain, diurnal vari- ations from the eastern edge of the TP to the Yangtze River-Huaihe River valleys (YHRV), and two precipitation maximum centers related to the SWV, MYFV. Analyses of the averaged final seven-day simulation showed the different diurnal peaks of precipitation at different regions: from the aftemoon to early evening at the eastern edge of the TP; in the early evening to the next early morning in the Sichuan Basin (SCB); and in the late evening to the next early morning over the mei-yu front (MYF). Analyses of individual two-day cases confirmed that the upward branches of the nightlime MPS circulations enhanced the precipitation over the SWV and the MYFV and revealed that the eastward extension of the SWV and its con vection were conducive to triggering the MYFVs. The eastward propagation of a rainfall streak from the eastern edge of the TP to the eastern coastal region was primarily due to a series of convective activities of several systems from west to east, including the MPS between the TP and SCB, the SWV, the MPS between second-step terrain and tile east plains, and the MYFV.
基金supported by the research grant KZCX3-SW-226 of the Chinese Academy of Sciencesthe National Basic Research Program of China(973 Program, Grant No. 2006CB403600)CityU Strategic Research Grant 7002231
文摘This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both mei-yu precipitation and mei-yu duration are characterized by significant decadal variability. Their decadal components are closely correlated with a triple mode of North Atlantic SSTA in the preceding winter. Regression analysis demonstrates that the wintertime North Atlantic SSTA may impose a delayed impact on East Asia Summer Monsoon (EASM) circulation and mei-yu on the decadal timescale. The persistency of SSTA plays an important role during this course. The triple SSTA mode can persist from winter until late spring. It is suggested that the springtime SSTA may excite a stationary wave-train propagating from west Eurasia to East Asia and exert an impact on mei-yu.
基金This project was supported by the National Key Basic Research and Development Project 2004CB418301the National Natural Science Foundation of China under Grant No.40405008.
文摘The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3 h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MaCS. Several convection lines developed during the evolution of the MaCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.
基金supported by the National Natural Science Foundation of China under Grant No.40505011.
文摘A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dimension Data Assimilation). The analysis shows that seven weak small mesoscale vortexes of tens of kilometers, correspondent to surface low trough or mesoscale centers, in the planetary boundary layer (PBL) in the mei-yu front were heavily responsible for the heavy rainfall. Sometimes, several weak small-scale vortexes in the PBL could form a vortex group, some of which would weaken locally, and some would develop to be a meso-α-scale low vortex through combination. The initial dynamical triggering mechanism was related to two strong currents: one was the northeast flow in the PBL at the rear of the mei-yu front, the vortexes occurred exactly at the side of the northeast flow; and the other was the strong southwest low-level jet (LLJ) in front of the Mei-yu front, which moved to the upper of the vortexes. Consequently, there were notable horizontal and vertical wind shears to form positive vorticity in the center of the southwest LLJ. The development of mesoscale convergence in the PBL and divergence above, as well as the vertical positive vorticity column, were related to the small wind column above the nose-shaped velocity contours of the northeast flow embedding southwestward in the PBL, which intensified the horizontal wind shear and the positive vorticity column above the vortexes, baroclinicity and instability.
基金supported by the National Key Scientific and Technological Project 2006BAC02B03,2004CB418300under the FANEDD 200325+1 种基金The Specialized Research Fund for the Doctoral Program of Higher Education (20080284019)National Natural Science Foundation of China under Grant No.40325014
文摘Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4- 6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective instability and the moist physics convective system indicates two peaks, which correspond with inside the mei-yu front, and related to moist The error growth for the mei-yu heavy rainfall is concentrated convective instability and scale interaction.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 40325014, 40333031SRFDP, TRAP0YT, FANEDD 11999, and under the support of The Key Scientific and Technological Project of the Ministry of Education The State Key Basic Research Program (Grant No. 2004CB18300).
文摘The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.
基金This work was jointly supported by National Key R&D Program of China(2018YFC1505806)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金National Science Foundation of China(41875100)the China Meteorological Administration Innovation and Development Project(CXFZ2021Z033),and China Three Gorges Corporation(Grant No.0704181).
文摘The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.
基金sponsored by the Joint Funds of National Natural Science Foundation of China (Grant No. U0733002)the National Natural Science Foundation of China (Grant No. 40906010)+1 种基金Government of Hong Kong Environment and Conservation Fund(Grant No. 9211008)City University of Hong Kong(Strategic Research Grant No. 7002505)
文摘The aim of this study was to investigate changes in the relationship between mei-yu rainfall over East China and La Nifia events in the late 1970s, a period concurrent with the Pacific climate shift, using meiyu rainfall data and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. This relationship was modulated by the climate shift: Before the 1977/1978 climate shift and after the 1992/1993 climate shift, mei-yu rainfall levels were above normal in most La Nifia years, whereas during the period 1979 1991, mei-yu rainfall was usually below normal levels in La Nifia years. Both composite analyses and results from an atmospheric general circulation model show remarkable detail in terms of La Nifia's impacts on mei-yu rainfall in the late 1970s due to the change in the mean climatic state over the tropical Pacific. After the late 1970s, the tropical Pacific SSTs were warmer, and the mean state of low-level anticyclone circulation over the western North Pacific (WNP) weakened. Superimposed on La Nifia-related cyclonic anomaly over the WNP, anticyclonic circulation weakened. Prior to the late 1970s, the mean state of low-level anticyclone circulation over the WNP was stronger and was less affected by La Nifia-related anomalous cyclones. Anticyclone circulation may have brought moisture to the Yangtze River valley, leading to above-normal rainfall.
基金supported by the National Natural Science Foundation of China(Grant No.40925015)the National Program on Key Basic Research Project(Grant Nos.2010CB950403and2012CB417203)
文摘The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection were investigated. During the both flooding cases, although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere, the phase of the Rossby wave train is different over Eurasian continent. During flooding in the Huaihe River valley, only one single blocking anticyclone is located over Baikal Lake. In contrast, during flooding in the Yangtze River valley, there are two blocking anticyclones. One is over the Ural Mountains and the other is over Northeast Asia. In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases, but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding. Fhrthermore, abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula. However, the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific. Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation. While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south, along with abundant rainfall.
基金the State Key Basic Research Program (No. G1990040709) the National Natural Science Foundation of China (Grant No. 49875011).
文摘The paper presents one diagnosis of baroclinity and the coupling of jets during the developing process of a cyclone that occurred on the mei-yu (Baiu) front around the end of the second stage of the mei-yu (Baiu) in 1998. Results have shown that: (1) The advantageous changes of upper-level large-scale circulation caused the appearance and maintenance of the coupling between the upper-level jet (ULJ) and lower-level jet (LLJ) over the cyclone's area. The coupling of jets in this case possesses some different characteristics from previous cases. Moreover, the coupling between the ULJ and LLJ caused the intensification of both lower-level convergence and upper-level divergence, which was favorable for the development of this cyclone. (2) From the analysis of the voricity budget, the role of lower-level convergence in the development of the cyclone was emphasized. Divergent wind in the lower troposphere was a direct contributor to the development of the cyclone. (3) During the development of the cyclone, cold air and warm air were active over the cyclone's domain. Although this cyclone occurred at the mei-yu (Baiu) front, its development assumed baroclinity to a certain extent, which was just the main difference between this kind of cyclone and the first kind of low which is usually barotropic (or quasi-barotropic). (4) In recent years, studies on mei-yu front lows have paid more attention to the lower troposphere. In this paper, the analysis of the energy budget further supports this point: the certain effect of baroclinity forcing in the upper troposphere on mei-yu front lows cannot be ignored.
基金supported by the National Natural Science Foundation of China under Grant No.40405020.
文摘An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after verifying the ability of a tangent linear and adjoint model to describe small perturbations in the nonlinear model, the sensitivity gradient analysis is implemented in detail. The sensitivity gradient with respect to different physical fields are not uniform in intensity, simulation error is most sensitive to the vapor mixed ratio. The localization and consistency are obvious characters of horizontal distribution of the sensitivity gradient, which is useful for the practical implementation of adaptive observation. The sensitivity region tilts to the northwest with height increasing; the singular vector calculation proves that this tilting characterizes a quick-growing structure, which denotes that using the leading singular vectors to decide the adaptive observation region is proper. When connected with simulation of a mesoscale low on the mei-yu Front, the sensitivity gradient has the following physical characters: the obvious sensitive region is mesoscale, concentrated in the middle-upper troposphere, and locates around the key system; and the sensitivity gradient of different physical fields correlates dynamically.
基金This work was jointly supported by the National Key Research and Development Plan“Major Natural Disaster Monitoring,Warning and Prevention”(2017YFC1502301)the Natural Science Foundation of Shanghai(21ZR1457600)+1 种基金the National Natural Science Foundation of China under Grant No.41790471 and 41775047China Three Gorges Corporation(Grant No.0704181).
文摘The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961.In this work,we comprehensively analyzed the mechanism of the extreme mei-yu season in 2020,with focuses on the combined effects of the Madden-Julian Oscillation(MJO)and the cooperative influence of the Pacific and Indian Oceans in 2020 and from a historical perspective.The prediction and predictability of the extreme mei-yu are further investigated by assessing the performances of the climate model operational predictions and simulations.It is noted that persistent MJO phases 1−2 during June−July 2020 played a crucial role for the extreme mei-yu by strengthening the western Pacific subtropical high.Both the development of La Niña conditions and sea surface temperature(SST)warming in the tropical Indian Ocean exerted important influences on the long-lived MJO phases 1−2 by slowing down the eastward propagation of the MJO and activating convection related to the MJO over the tropical Indian Ocean.The spatial distribution of the 2020 mei-yu can be qualitatively captured in model real-time forecasts with a one-month lead.This can be attributed to the contributions of both the tropical Indian Ocean warming and La Niña development.Nevertheless,the mei-yu rainfall amounts are seriously underestimated.Model simulations forced with observed SST suggest that internal processes of the atmosphere play a more important role than boundary forcing(e.g.,SST)in the variability of mei-yu anomaly,implying a challenge in quantitatively predicting an extreme mei-yu season,like the one in 2020.
基金This paper was supported by the National Natural Science Foundation of China(Grant No.42075037)the Ministry of Science and Technology of China(Grant No.2018YFA0606501)the Program of International S&T Cooperation(Grant No.2018YFE0196000).
文摘The summer of 2020 recorded a record-breaking flood due to excessive mei-yu rain falling over the Yangtze River Valley(YRV).Using the Lagrangian model FLEXPART,this paper investigates moisture sources and transport processes behind this extreme event.Based on climate data from 1979 to 2019,the air-particle(an infinitesimally small air parcel)trajectories reaching the YRV show sectors that correspond to five main moisture sources:the Indian monsoon region(IND,27.5%of the total rainfall),the local evaporation(27.4%),the Western Pacific Ocean(WPO,21.3%),the Eurasian continent(8.5%)and Northeast Asia(4.4%).In the 2020 mei-yu season,moisture from all source regions was above normal except that from Northeast Asia.A record-breaking moisture source from the IND and WPO dominated this extreme mei-yu flood in 2020,which was 1.5 and 1.6 times greater than the climate mean,respectively.This study reveals a significant relationship between the moisture source with three moisture transport processes,i.e.,trajectory density,moisture content,and moisture uptake of air-particles.A broad anomalous anticyclonic circulation over the Indo-Northwestern Pacific(Indo-NWP)provides a favorable environment to enhance the moisture transport from the IND and WPO into the YRV.In the 2020 mei-yu season,a record-breaking Indo-NWP anomalous anticyclonic circulation contributed to a higher trajectory density as well as higher moisture content and moisture uptake of air-particles from the IND and WPO regions.This collectively resulted in unprecedented moisture transport from source origins,thus contributing to the mei-yu flood over the YRV in 2020.
基金supported by the National Natural Science Foundation of China under Grant Nos.40805019,40828005,and 40325014the National Special Funding Project for Meteorology(GYHY200706033,GYHY200706020)+2 种基金the Key Project for National Science and Technology Program in Eleventh Five Year Plan (2006BAC02B03)the Specialized Research Fund for the Doctoral Program of Higher Education(20080284019)the Key project of Ministry of Education of China (02109)
文摘The mesoscale moist adjoint sensitivities related to the initiation of mesoscale convective systems (MCSs) are evaluated for a mei-yu heavy rainfall event. The sensitivities were calculated on a realistic background gained from a four-dimensional variational data assimilation of precipitation experiment to make the sensitivity computation possible and reasonable within a strong moist convective event at the mesoscale. The results show that the computed sensitivities at the mesoscale were capable of capturing the factors affecting MCS initiation. The sensitivities to the initial temperature and moisture are enhanced greatly by diabatic processes, especially at lower levels, and these sensitivities are much larger than those stemming from the horizontal winds, which implies that initiation of MCSs is more sensitive to low-level temperature and moisture perturbations rather than the horizontal winds. Moreover, concentration of sensitivities at low levels reflects the characteristics of the mei-yu front. The results provide some hints about how to improve quantitative precipitation forecasts of mei-yu heavy rainfall, such as by conducting mesoscale targetted observations via the adjoint-based method to reduce the low-level errors in the initial temperature and moisture.