Aeroheating prediction is a challenging and critical problem for the design and optimization of hypersonic vehicles.One challenge is that the solution of the Navier-Stokes equations strongly depends on the computation...Aeroheating prediction is a challenging and critical problem for the design and optimization of hypersonic vehicles.One challenge is that the solution of the Navier-Stokes equations strongly depends on the computational mesh.In this letter,the effect of mesh resolution on heat flux prediction is studied.It is found that mesh-independent solutions can be obtained using fine mesh,whose accuracy is confirmed by results from kinetic particle simulation.It is analyzed that mesh-induced numerical error comes mainly from the flux calculation in the boundary layer whereas the temperature gradient on the surface can be evaluated using a wall function.Numerical schemes having strong capability of boundary layer capture are therefore recommended for hypersonic heating prediction.展开更多
基金supported by the National Natural Science Foundation of China(50836007,90816012,10621202.)
文摘Aeroheating prediction is a challenging and critical problem for the design and optimization of hypersonic vehicles.One challenge is that the solution of the Navier-Stokes equations strongly depends on the computational mesh.In this letter,the effect of mesh resolution on heat flux prediction is studied.It is found that mesh-independent solutions can be obtained using fine mesh,whose accuracy is confirmed by results from kinetic particle simulation.It is analyzed that mesh-induced numerical error comes mainly from the flux calculation in the boundary layer whereas the temperature gradient on the surface can be evaluated using a wall function.Numerical schemes having strong capability of boundary layer capture are therefore recommended for hypersonic heating prediction.