By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(...By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(meshfree RRKPM)is proposed.Meanwhile,the meshfree RRKPM is applied to transient heat conduction problems(THCP),and the corresponding equations of the meshfree RRKPM for the THCP are derived.The twopoint time difference scheme is selected to discretize the time of the THCP.Finally,the numerical results illustrate the effectiveness of the meshfree RRKPM for the THCP.展开更多
Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as eleme...Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled- source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.展开更多
A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and s...A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and small scale effects through the generalized higher order shear deformation theory and modified couple stress theory(MCST).The present model only retains a single material length scale parameter for capturing properly size effects.A rule of mixture is used to model material properties varying through the thickness of plates.The principle of virtual work is used to derive the discrete system equations which are approximated by moving Kriging interpolation(MKI)meshfree method.Numerical examples consider the inclusions of geometrical parameters,volume fraction,boundary conditions and material length scale parameter.Reliability and effectiveness of the present method are confirmed through numerical results.展开更多
The collective cell migration behavior on a substrate was studied using RKPM meshfree method.The cells were modeled as nematic liquid crystal with hyperelastic cell nucleus.The cell-substrate and cell-cell interaction...The collective cell migration behavior on a substrate was studied using RKPM meshfree method.The cells were modeled as nematic liquid crystal with hyperelastic cell nucleus.The cell-substrate and cell-cell interactions were modeled by coarse-grained potential forces.Through this study,the pulling and pushing phenomenon during collective cell migration process was observed and it was found that the individual cell mobility significantly influenced the collective cell migratory behavior.More self-propelled cells are in the system along the same direction,the faster the collective group migrates toward coordinated direction.The parametric study on cell-cell adhesion strength indicated that as the adhesion strength increases,the collective cell migration speed increases.It also showed that the mechanical stress in leader cell is higher than stress in follower cells.展开更多
Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes w...Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes with- out connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approxima- tion. Then local discrete equations can be simplified by con- densation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by as- sembling all local discrete equations and are solved by using the standard implicit Newmark's time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is imple- mented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems.展开更多
This paper proposes a geometrically nonlinear total Lagrangian Galerkin meshfree formulation based on the stabilized conforming nodal integration for efficient analysis of shear deformable beam.The present nonlinear a...This paper proposes a geometrically nonlinear total Lagrangian Galerkin meshfree formulation based on the stabilized conforming nodal integration for efficient analysis of shear deformable beam.The present nonlinear analysis encompasses the fully geometric nonlinearities due to large deflection,large deformation as well as finite rotation.The incremental equilibrium equation is obtained by the consistent linearization of the nonlinear variational equation.The Lagrangian meshfree shape function is utilized to discretize the variational equation.Subsequently to resolve the shear and membrane locking issues and accelerate the computation,the method of stabilized conforming nodal integration is systematically implemented through the Lagrangian gradient smoothing operation.Numerical results reveal that the present formulation is very effective.展开更多
Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of...Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.展开更多
Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods d...Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis.This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical simulations are carried out on an SGI Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical conditions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope sliding.展开更多
A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a...A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.展开更多
Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and the...Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.展开更多
This study adapts the flexible characteristic of meshfree method in analyzing three-dimensional(3D)complex geometry structures,which are the interlocking concrete blocks of step seawall.The elastostatic behavior of th...This study adapts the flexible characteristic of meshfree method in analyzing three-dimensional(3D)complex geometry structures,which are the interlocking concrete blocks of step seawall.The elastostatic behavior of the block is analysed by solving the Galerkin weak form formulation over local support domain.The 3D moving least square(MLS)approximation is applied to build the interpolation functions of unknowns.The pre-defined number of nodes in an integration domain ranging from 10 to 60 nodes is also investigated for their effect on the studied results.The accuracy and efficiency of the studied method on 3D elastostatic responses are validated through the comparison with the solutions of standard finite element method(FEM)using linear shape functions on tetrahedral elements and the well-known commercial software,ANSYS.The results show that elastostatic responses of studied concrete block obtained by meshfree method converge faster and are more accurate than those of standard FEM.The studied meshfree method is effective in the analysis of static responses of complex geometry structures.The amount of discretised nodes within the integration domain used in building MLS shape functions should be in the range from 30 to 60 nodes and should not be less than 20 nodes.展开更多
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
We prove convergence for a meshfree first-order system least squares(FOSLS) partition of unity finite element method(PUFEM).Essentially,by virtue of the partition of unity,local approximation gives rise to global appr...We prove convergence for a meshfree first-order system least squares(FOSLS) partition of unity finite element method(PUFEM).Essentially,by virtue of the partition of unity,local approximation gives rise to global approximation in H(div)∩H(curl). The FOSLS formulation yields local a posteriori error estimates to guide the judicious allotment of new degrees of freedom to enrich the initial point set in a meshfree dis- cretization.Preliminary numerical results are provided and remaining challenges are discussed.展开更多
In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of thi...In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of this paper.Firstly,we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space,which is competitive for high-dimensional random inputs.Secondly,the a priori error estimates are derived for the state,the co-state and the control variables.Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method.展开更多
In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the ...In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.展开更多
An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where fo...An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where for the purpose of stability and efficiency a Lagrangian smoothing strain at nodal point is constructed and thereafter the internal energy is evaluated nodally. This formulation ensures the linear exactness, efficiency and spatial stability in a unified manner and it makes the conventional Galerkin meshfree method affordable for three dimensional simulation. The three dimensional implementation of stabilized conforming nodal integration is discussed in details. To model the failure evolution in soil medium a coupled elasto-plastic damage model is used and an objective stress integration algorithm in combination of elasto-damage predictor and plastic corrector method is employed for stress update. Two typical numerical examples are shown to demonstrate the effectiveness of the present method for modeling large deformation soil failure.展开更多
A three-dimensional two-level gradient smoothing meshfree method is presented for rainfall induced landslide simulations. The two-level gradient smoothing for meshfree shape function is elaborated in the threedimensio...A three-dimensional two-level gradient smoothing meshfree method is presented for rainfall induced landslide simulations. The two-level gradient smoothing for meshfree shape function is elaborated in the threedimensional Lagrangian setting with detailed implementation procedure. It is shown that due to the successive gradient smoothing operation without the requirement of derivative computation in the present formulation, the two-level smoothed gradient of meshfree shape function is capable of achieving a given influence domain more efficiently than the standard gradient of meshfree shape function. Subsequently, the two-level smoothed gradient of meshfree shape function is employed to discretize the weak form of coupled rainfall seepage and soil motion equations in a nodal integration format, as provides an efficient three-dimensional regularized meshfree formulation for large deformation rainfall induced landslide simulations. The exponential damage and pressure dependent plasticity relationships are utilized to describe the failure evolution in landslides. The plastic response of soil is characterized by the true effective stress measure, which is updated according to the rotationally neutralized objective integration algorithm. The effectiveness of the present threedimensional two?level gradient smoothing meshfree method is demonstrated through numerical examples.展开更多
The boundary particle method(BPM)is a truly boundary-only collocation scheme,whose basis function is the high-order nonsingular general solution or singular fundamental solution,based on the recursive composite multip...The boundary particle method(BPM)is a truly boundary-only collocation scheme,whose basis function is the high-order nonsingular general solution or singular fundamental solution,based on the recursive composite multiple reciprocity method(RC-MRM).The RC-MRM employs the high-order composite differential operator to solve a much wider variety of inhomogeneous problems with boundary-only collocation nodes while significantly reducing computational cost via a recursive algorithm.In this study,we simulate the Kirchhoff plate bending problems by the BPM based on the RC-MRM.Numerical results show that this approach produces accurate solutions of plates subjected to various loadings with boundary-only discretization.展开更多
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2017MA028)supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2020MA059).
文摘By introducing the radial basis functions(RBFs)into the reproducing kernel particle method(RKPM),the calculating accuracy and stability of the RKPM can be improved,and a novel meshfree method of the radial basis RKPM(meshfree RRKPM)is proposed.Meanwhile,the meshfree RRKPM is applied to transient heat conduction problems(THCP),and the corresponding equations of the meshfree RRKPM for the THCP are derived.The twopoint time difference scheme is selected to discretize the time of the THCP.Finally,the numerical results illustrate the effectiveness of the meshfree RRKPM for the THCP.
基金supported by the National Nature Science Foundation of China(Grant No.40874055)the Natural Science Foundation of the Hunan Province,China(Grant No.14JJ2012)
文摘Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled- source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.
文摘A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and small scale effects through the generalized higher order shear deformation theory and modified couple stress theory(MCST).The present model only retains a single material length scale parameter for capturing properly size effects.A rule of mixture is used to model material properties varying through the thickness of plates.The principle of virtual work is used to derive the discrete system equations which are approximated by moving Kriging interpolation(MKI)meshfree method.Numerical examples consider the inclusions of geometrical parameters,volume fraction,boundary conditions and material length scale parameter.Reliability and effectiveness of the present method are confirmed through numerical results.
基金This work is supported by a grant from National Institutes of Health(Grant No.SC2GM112575)a grant from the John L.Santikos Charitable Foundation of the San Antonio Area Foundation.
文摘The collective cell migration behavior on a substrate was studied using RKPM meshfree method.The cells were modeled as nematic liquid crystal with hyperelastic cell nucleus.The cell-substrate and cell-cell interactions were modeled by coarse-grained potential forces.Through this study,the pulling and pushing phenomenon during collective cell migration process was observed and it was found that the individual cell mobility significantly influenced the collective cell migratory behavior.More self-propelled cells are in the system along the same direction,the faster the collective group migrates toward coordinated direction.The parametric study on cell-cell adhesion strength indicated that as the adhesion strength increases,the collective cell migration speed increases.It also showed that the mechanical stress in leader cell is higher than stress in follower cells.
基金supported by the National Natural Science Founda-tion of China(11272118)Open Found of State Key Laboratory of Explosion Science and Technology(KFJJ12-5M)
文摘Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes with- out connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approxima- tion. Then local discrete equations can be simplified by con- densation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by as- sembling all local discrete equations and are solved by using the standard implicit Newmark's time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is imple- mented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems.
基金supported by the National Natural Science Foundation of China (10972188)the Program for New Century Excellent Talents in University from China Education Ministry (NCET-09-0678)
文摘This paper proposes a geometrically nonlinear total Lagrangian Galerkin meshfree formulation based on the stabilized conforming nodal integration for efficient analysis of shear deformable beam.The present nonlinear analysis encompasses the fully geometric nonlinearities due to large deflection,large deformation as well as finite rotation.The incremental equilibrium equation is obtained by the consistent linearization of the nonlinear variational equation.The Lagrangian meshfree shape function is utilized to discretize the variational equation.Subsequently to resolve the shear and membrane locking issues and accelerate the computation,the method of stabilized conforming nodal integration is systematically implemented through the Lagrangian gradient smoothing operation.Numerical results reveal that the present formulation is very effective.
文摘Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.
文摘Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis.This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical simulations are carried out on an SGI Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical conditions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope sliding.
基金the National Natural Science Foundation of China (No. 50275059).
文摘A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.
基金Project(2010CB732103)supported by the National Basic Research Program of ChinaProject(51179092)supported by the National Natural Science Foundation of ChinaProject(2012-KY-02)supported by the State Key Laboratory of Hydroscience and Engineering,China
文摘Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.
基金the VLIR-UOS TEAM Project,VN2017TEA454A103,‘An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion’,funded by the Flemish Government.https://www.vliruos.be/en/projects/project/22?pid=3251.
文摘This study adapts the flexible characteristic of meshfree method in analyzing three-dimensional(3D)complex geometry structures,which are the interlocking concrete blocks of step seawall.The elastostatic behavior of the block is analysed by solving the Galerkin weak form formulation over local support domain.The 3D moving least square(MLS)approximation is applied to build the interpolation functions of unknowns.The pre-defined number of nodes in an integration domain ranging from 10 to 60 nodes is also investigated for their effect on the studied results.The accuracy and efficiency of the studied method on 3D elastostatic responses are validated through the comparison with the solutions of standard finite element method(FEM)using linear shape functions on tetrahedral elements and the well-known commercial software,ANSYS.The results show that elastostatic responses of studied concrete block obtained by meshfree method converge faster and are more accurate than those of standard FEM.The studied meshfree method is effective in the analysis of static responses of complex geometry structures.The amount of discretised nodes within the integration domain used in building MLS shape functions should be in the range from 30 to 60 nodes and should not be less than 20 nodes.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.
文摘We prove convergence for a meshfree first-order system least squares(FOSLS) partition of unity finite element method(PUFEM).Essentially,by virtue of the partition of unity,local approximation gives rise to global approximation in H(div)∩H(curl). The FOSLS formulation yields local a posteriori error estimates to guide the judicious allotment of new degrees of freedom to enrich the initial point set in a meshfree dis- cretization.Preliminary numerical results are provided and remaining challenges are discussed.
基金supported by the National Natural Science Foundation of China(Nos.11701253,11971259,11801216)Natural Science Foundation of Shandong Province(No.ZR2017BA010)。
文摘In this paper,we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients.There are two contributions of this paper.Firstly,we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space,which is competitive for high-dimensional random inputs.Secondly,the a priori error estimates are derived for the state,the co-state and the control variables.Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method.
基金Acknowledgments. The authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript. This work is supported by the National Natural Science Foundation of China(11172192) and the National Natural Science Pre-Research Foundation of Soochow University (SDY2011B01).
文摘In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10972188, 10602049)the Program for New Century Excellent Talents in University from China Education Ministry (Grant No. NCET-09-0678)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010121073)
文摘An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where for the purpose of stability and efficiency a Lagrangian smoothing strain at nodal point is constructed and thereafter the internal energy is evaluated nodally. This formulation ensures the linear exactness, efficiency and spatial stability in a unified manner and it makes the conventional Galerkin meshfree method affordable for three dimensional simulation. The three dimensional implementation of stabilized conforming nodal integration is discussed in details. To model the failure evolution in soil medium a coupled elasto-plastic damage model is used and an objective stress integration algorithm in combination of elasto-damage predictor and plastic corrector method is employed for stress update. Two typical numerical examples are shown to demonstrate the effectiveness of the present method for modeling large deformation soil failure.
基金the National Natural Science Foundation of China (Grant Nos.11772280 and 11472233)he Program for Scientific and Technological Innovation Leading Talents of Fujian Province is gratefully acknowledged.
文摘A three-dimensional two-level gradient smoothing meshfree method is presented for rainfall induced landslide simulations. The two-level gradient smoothing for meshfree shape function is elaborated in the threedimensional Lagrangian setting with detailed implementation procedure. It is shown that due to the successive gradient smoothing operation without the requirement of derivative computation in the present formulation, the two-level smoothed gradient of meshfree shape function is capable of achieving a given influence domain more efficiently than the standard gradient of meshfree shape function. Subsequently, the two-level smoothed gradient of meshfree shape function is employed to discretize the weak form of coupled rainfall seepage and soil motion equations in a nodal integration format, as provides an efficient three-dimensional regularized meshfree formulation for large deformation rainfall induced landslide simulations. The exponential damage and pressure dependent plasticity relationships are utilized to describe the failure evolution in landslides. The plastic response of soil is characterized by the true effective stress measure, which is updated according to the rotationally neutralized objective integration algorithm. The effectiveness of the present threedimensional two?level gradient smoothing meshfree method is demonstrated through numerical examples.
基金supported by a research project funded by the National Natural Science Foundation of China(Project No.10672051).
文摘The boundary particle method(BPM)is a truly boundary-only collocation scheme,whose basis function is the high-order nonsingular general solution or singular fundamental solution,based on the recursive composite multiple reciprocity method(RC-MRM).The RC-MRM employs the high-order composite differential operator to solve a much wider variety of inhomogeneous problems with boundary-only collocation nodes while significantly reducing computational cost via a recursive algorithm.In this study,we simulate the Kirchhoff plate bending problems by the BPM based on the RC-MRM.Numerical results show that this approach produces accurate solutions of plates subjected to various loadings with boundary-only discretization.