A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45...A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.展开更多
Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seas...Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seasonal means. Our findings reveal a discernible predictability limit of approximately 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) within the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and large-radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also has seasonal variations, further finding that the area of higher predictability limits often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs characterized by high predictability limit values exhibit more extended and smoother trajectories and often move along the northern slope of the SCS.展开更多
Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental pro...Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies.展开更多
The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and co...The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).展开更多
Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate ...Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate detection capability,but their detection computational efficiency is low.In recent years,with the increasing application of deep learning in ocean feature detection,many deep learning-based eddy detection models have been developed for more effective eddy detection from ocean data.But it is difficult for them to precisely fit some physical features implicit in traditional methods,leading to inaccurate identification of ocean eddies.In this study,to address the low efficiency of traditional physical methods and the low detection accuracy of deep learning models,we propose a solution that combines the target detection model Faster Region with CNN feature(Faster R-CNN)with the traditional dynamic algorithm Angular Momentum Eddy Detection and Tracking Algorithm(AMEDA).We use Faster R-CNN to detect and generate bounding boxes for eddies,allowing AMEDA to detect the eddy center within these bounding boxes,thus reducing the complexity of center detection.To demonstrate the detection efficiency and accuracy of this model,this paper compares the experimental results with AMEDA and the deep learningbased eddy detection method eddyNet.The results show that the eddy detection results of this paper are more accurate than eddyNet and have higher execution efficiency than AMEDA.展开更多
Except for conventional mesoscale eddies,there are also abundant warm cyclonic eddies(WCEs)and cold anticyclonic eddies(CAEs)in the global ocean.Based on the global mesoscale eddy trajectory atlas product,satellite al...Except for conventional mesoscale eddies,there are also abundant warm cyclonic eddies(WCEs)and cold anticyclonic eddies(CAEs)in the global ocean.Based on the global mesoscale eddy trajectory atlas product,satellite altimetric and remote sensing datasets,and three-dimensional temperature/salinity dataset,spatiotemporal features of WCEs and CAEs are compared with traditional cold cyclonic eddies and warm anticyclonic eddies in the Kuroshio Extension(KE;28°−43°N,140°−170°E)region.Characteristics of abnormal eddies like radius,amplitude,eddy kinetic energy,and proportion in all eddies behave in significant asymmetry on the north and south sides of the KE jet.Unlike eddies in the general sense,temporal feature analysis reveals that it is more favorable to the formation and maintenance of WCEs and CAEs in summer and autumn,while winter is the opposite.The spatiotemporal variation of abnormal eddies is likely because the marine environment varying with time and space.Statistically,proportion of abnormal eddies increases rapidly in decaying stage during the whole eddy lifespan,resulting in smaller average radius,amplitude,sea surface temperature anomaly and sea surface height anomaly compared to normal ones.The three-dimensional composite structures for four types of eddies expose that the difference between abnormal and conventional eddies is not just limited to the sea surface,but also exists within the water below the sea surface.Vertical structures also indicate that the anomalous temperature signal is confined in the water from the sea surface to layers at about 30 m in the KE region.展开更多
A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics...A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.展开更多
The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy pr...The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies.展开更多
An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after ve...An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after verifying the ability of a tangent linear and adjoint model to describe small perturbations in the nonlinear model, the sensitivity gradient analysis is implemented in detail. The sensitivity gradient with respect to different physical fields are not uniform in intensity, simulation error is most sensitive to the vapor mixed ratio. The localization and consistency are obvious characters of horizontal distribution of the sensitivity gradient, which is useful for the practical implementation of adaptive observation. The sensitivity region tilts to the northwest with height increasing; the singular vector calculation proves that this tilting characterizes a quick-growing structure, which denotes that using the leading singular vectors to decide the adaptive observation region is proper. When connected with simulation of a mesoscale low on the mei-yu Front, the sensitivity gradient has the following physical characters: the obvious sensitive region is mesoscale, concentrated in the middle-upper troposphere, and locates around the key system; and the sensitivity gradient of different physical fields correlates dynamically.展开更多
The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along w...The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.展开更多
SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative proba...SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative probabilities between the number of anticyclonic/cyclonic ME fronts(AEF/CEF)and the number of anticyclones/cyclones reached 20%.The northeastern and southwestern parts of these anticyclones had more fronts than the northwestern and southeastern parts,although CEFs were nearly equally distributed in all directions.The number of ME fronts had remarkable seasonal variations,while the eddy kinetic energy(EKE)showed no seasonal variations.The total EKE at the ME fronts was three times of that within the MEs,and it was much stronger in AEFs than in CEFs.The interannual variability in the number of ME fronts and EKE had no significant correlation with the El Ni?o-Southern Oscillation(ENSO)index.Possible mechanisms of ME fronts were discussed,but the contributions of mesoscale eddies to SST fronts need to be quantified in future studies.展开更多
The eastward-moving Meiyu-Baiu frontal mesoscale vortices (MBFMVs) appear frequently and often cause heavy rainfall events along their tracks. A move-off-shore MBFMV was selected to enhance our understanding of this t...The eastward-moving Meiyu-Baiu frontal mesoscale vortices (MBFMVs) appear frequently and often cause heavy rainfall events along their tracks. A move-off-shore MBFMV was selected to enhance our understanding of this type of vortex. Synoptic analyses indicate that the MBFMV is a type of meso-α vortex and mainly occurs in the lower troposphere. A short wave trough near the coastline is highly favorable for the formation, sustainment, and displacement of the MBFMV. Vorticity budgets indicate that at lower levels of the MBFMV, convergence is the dominant factor for the increase of positive vorticity, and at high levels of the MBFMV, the vertical transportation associated with convective activities is the most important factor. The hori-zontal transportation was the main factor decreasing the positive vorticity. The land and sea environments are crucial to the evolution of the MBFMV. The characteristics of the Meiyu-Baiu Front (MBF) are also vital to the variation of the vortex.展开更多
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul...The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.展开更多
The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameteri...The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS.展开更多
On the basis of the MM5 simulation data of the severe storm that occurred over the southeastern part of Hubei province on 21 July 1998, the interaction of mesoscale convection and frontogenesis is dealt with using t...On the basis of the MM5 simulation data of the severe storm that occurred over the southeastern part of Hubei province on 21 July 1998, the interaction of mesoscale convection and frontogenesis is dealt with using the thermodynamical equation and frontogenetical function. The results show that the outbreak of the severe storm is closely related to the local frontogenesis. In fact, the interaction between the shearing instability of the low-level jet (LLJ) and the topographic forcing generates an gravity-inertia wave as well as local frontogenesis (the ?rst front), which consequently induce the onset of the severe storm. From then on, owing to the horizontal and vertical advection of the potential temperature, the new frontogenesis (the second front) is formed to the northeast side of the severe storm, which initiates the second rain belt. Meanwhile, a two-front structure emerges over the southeastern part of Hubei province. Accompanied with the further intensi?cation of the convection, the rain droplets evaporation cooling strengthens the ?rst front and weakens the second front, resulting in single front structure over the southeastern part of Hubei province in the period of the strong convection.展开更多
The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt f...The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties.展开更多
A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the W...A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region.展开更多
Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of oce...Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of ocean mesoscale eddy. An underwater acoustic modeI-MMPE was used to simulate the acoustic propagation under the influence of different types, different intensities and positions of eddies, and different frequencies and depths of sources. It is found that warm-core eddy can make the convergence zone "move back" and the width of it increases, while cold-core eddy can make the convergence zone "move forward" and the width of it decreases. The bigger the intensity of eddy, the more notable the "forward "or "back "effect. Sound source located depths and source frequencies can change the acoustic propagation characteristics in the eddy area.展开更多
Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge ga...Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.展开更多
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ...The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.展开更多
基金primarily supported by the Ministry of Science and Technology of the People's Republic of China (MOST)(Grant No. 2018YFC1507303)National Natural Science Foundation of China (Grant Nos. 419505044,41941007, and 42230607)+1 种基金by the Talent Research Start-Up Fund of Nanjing University of Aeronautics and Astronautics(Grant No. 1007-90YAH22046)supported by The High Performance Computing Platform of Nanjing University of Aeronautics and Astronautics。
文摘A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.
基金supported by the National Key R&D Program for Developing Basic Sciences(2022YFC3104802).
文摘Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seasonal means. Our findings reveal a discernible predictability limit of approximately 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) within the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and large-radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also has seasonal variations, further finding that the area of higher predictability limits often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs characterized by high predictability limit values exhibit more extended and smoother trajectories and often move along the northern slope of the SCS.
基金The National Key R&D Program of China under contract No.2022YFC2807604the Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2022S02,2022Q03 and 2018S02+3 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0105-3the National Natural Science Foundation of China under contract Nos 41876030,41976021,41876231,4190060432 and 41706220the program Impact and Response of Antarctic Seas to Climate Change under contract No.IRASCC 01-01-01Athe Taishan Scholars Project Fund under contract No.ts20190963。
文摘Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies.
基金The National Natural Science Foundation of China under contract Nos 41875061 and 41775165.
文摘The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).
基金the National Science Foundation of China(No.42175194)the National Natural Science Foundation of China(No.41976165)for funding this work.
文摘Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate detection capability,but their detection computational efficiency is low.In recent years,with the increasing application of deep learning in ocean feature detection,many deep learning-based eddy detection models have been developed for more effective eddy detection from ocean data.But it is difficult for them to precisely fit some physical features implicit in traditional methods,leading to inaccurate identification of ocean eddies.In this study,to address the low efficiency of traditional physical methods and the low detection accuracy of deep learning models,we propose a solution that combines the target detection model Faster Region with CNN feature(Faster R-CNN)with the traditional dynamic algorithm Angular Momentum Eddy Detection and Tracking Algorithm(AMEDA).We use Faster R-CNN to detect and generate bounding boxes for eddies,allowing AMEDA to detect the eddy center within these bounding boxes,thus reducing the complexity of center detection.To demonstrate the detection efficiency and accuracy of this model,this paper compares the experimental results with AMEDA and the deep learningbased eddy detection method eddyNet.The results show that the eddy detection results of this paper are more accurate than eddyNet and have higher execution efficiency than AMEDA.
基金The Natural Science Foundation of Shandong Province under contract No.ZR2021YQ28the Taishan Scholars Project of Shandong Province under contract No.tsqn202306182.
文摘Except for conventional mesoscale eddies,there are also abundant warm cyclonic eddies(WCEs)and cold anticyclonic eddies(CAEs)in the global ocean.Based on the global mesoscale eddy trajectory atlas product,satellite altimetric and remote sensing datasets,and three-dimensional temperature/salinity dataset,spatiotemporal features of WCEs and CAEs are compared with traditional cold cyclonic eddies and warm anticyclonic eddies in the Kuroshio Extension(KE;28°−43°N,140°−170°E)region.Characteristics of abnormal eddies like radius,amplitude,eddy kinetic energy,and proportion in all eddies behave in significant asymmetry on the north and south sides of the KE jet.Unlike eddies in the general sense,temporal feature analysis reveals that it is more favorable to the formation and maintenance of WCEs and CAEs in summer and autumn,while winter is the opposite.The spatiotemporal variation of abnormal eddies is likely because the marine environment varying with time and space.Statistically,proportion of abnormal eddies increases rapidly in decaying stage during the whole eddy lifespan,resulting in smaller average radius,amplitude,sea surface temperature anomaly and sea surface height anomaly compared to normal ones.The three-dimensional composite structures for four types of eddies expose that the difference between abnormal and conventional eddies is not just limited to the sea surface,but also exists within the water below the sea surface.Vertical structures also indicate that the anomalous temperature signal is confined in the water from the sea surface to layers at about 30 m in the KE region.
基金National Natural Science Foundation of China(41930972,52239006,41975001)。
文摘A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.
基金National Natural Science Foundation of China(41965001)。
文摘The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies.
基金supported by the National Natural Science Foundation of China under Grant No.40405020.
文摘An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after verifying the ability of a tangent linear and adjoint model to describe small perturbations in the nonlinear model, the sensitivity gradient analysis is implemented in detail. The sensitivity gradient with respect to different physical fields are not uniform in intensity, simulation error is most sensitive to the vapor mixed ratio. The localization and consistency are obvious characters of horizontal distribution of the sensitivity gradient, which is useful for the practical implementation of adaptive observation. The sensitivity region tilts to the northwest with height increasing; the singular vector calculation proves that this tilting characterizes a quick-growing structure, which denotes that using the leading singular vectors to decide the adaptive observation region is proper. When connected with simulation of a mesoscale low on the mei-yu Front, the sensitivity gradient has the following physical characters: the obvious sensitive region is mesoscale, concentrated in the middle-upper troposphere, and locates around the key system; and the sensitivity gradient of different physical fields correlates dynamically.
基金supported by the Beijing Municipal Science and Technology Project [grant number 2171100004417008]the National Natural Science Foundation of China [grant numbers 41575050,41875049,and 41805034]
文摘The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.
基金The National Natural Science Foundation of China under contract No.41976002。
文摘SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative probabilities between the number of anticyclonic/cyclonic ME fronts(AEF/CEF)and the number of anticyclones/cyclones reached 20%.The northeastern and southwestern parts of these anticyclones had more fronts than the northwestern and southeastern parts,although CEFs were nearly equally distributed in all directions.The number of ME fronts had remarkable seasonal variations,while the eddy kinetic energy(EKE)showed no seasonal variations.The total EKE at the ME fronts was three times of that within the MEs,and it was much stronger in AEFs than in CEFs.The interannual variability in the number of ME fronts and EKE had no significant correlation with the El Ni?o-Southern Oscillation(ENSO)index.Possible mechanisms of ME fronts were discussed,but the contributions of mesoscale eddies to SST fronts need to be quantified in future studies.
基金supported by the National Basic Research program of China (No. 2009CB421401)the National Natural Science Foundation of China (No. 40930951)
文摘The eastward-moving Meiyu-Baiu frontal mesoscale vortices (MBFMVs) appear frequently and often cause heavy rainfall events along their tracks. A move-off-shore MBFMV was selected to enhance our understanding of this type of vortex. Synoptic analyses indicate that the MBFMV is a type of meso-α vortex and mainly occurs in the lower troposphere. A short wave trough near the coastline is highly favorable for the formation, sustainment, and displacement of the MBFMV. Vorticity budgets indicate that at lower levels of the MBFMV, convergence is the dominant factor for the increase of positive vorticity, and at high levels of the MBFMV, the vertical transportation associated with convective activities is the most important factor. The hori-zontal transportation was the main factor decreasing the positive vorticity. The land and sea environments are crucial to the evolution of the MBFMV. The characteristics of the Meiyu-Baiu Front (MBF) are also vital to the variation of the vortex.
基金supported by the National Natural Science Foundation of China (No. 12172052)the China Postdoctoral Science Foundation (No. 3020036722021)
文摘The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.
基金supported jointly by the Projects of Jiangsu Key Lab of Meteorological Disaster (Grant No. Klme060207)the National Natural Science Foundation of China (Grant No. 40875031)
文摘The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS.
基金the National Natural Science Foundation of China (Grant Nos. 40205009, 40175005, 40075011) the Nanjing University Postdoctoral Foundation,the State Key Basic Program (CHERES).
文摘On the basis of the MM5 simulation data of the severe storm that occurred over the southeastern part of Hubei province on 21 July 1998, the interaction of mesoscale convection and frontogenesis is dealt with using the thermodynamical equation and frontogenetical function. The results show that the outbreak of the severe storm is closely related to the local frontogenesis. In fact, the interaction between the shearing instability of the low-level jet (LLJ) and the topographic forcing generates an gravity-inertia wave as well as local frontogenesis (the ?rst front), which consequently induce the onset of the severe storm. From then on, owing to the horizontal and vertical advection of the potential temperature, the new frontogenesis (the second front) is formed to the northeast side of the severe storm, which initiates the second rain belt. Meanwhile, a two-front structure emerges over the southeastern part of Hubei province. Accompanied with the further intensi?cation of the convection, the rain droplets evaporation cooling strengthens the ?rst front and weakens the second front, resulting in single front structure over the southeastern part of Hubei province in the period of the strong convection.
基金sponsored by the projects found by the National Natural Science Foundation of China(NSFC)under Grant No.51978163 and Grant No.52208439the Natural Science Foundation of Jiangsu Province under Grant No.BK20200468+4 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX22_0063the Jiangsu Transportation Science and Technology and Achievement Transformation Project under Grant No.2020Y19-1(1)Key S&T Project of Ministry of Transport of the People's Republic of China(2021-ZD1-004)the Scientific Research Program Project of Shanghai Municipal Transportation Commission(JT2021-KY-016)which the authors are very grateful.
文摘The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties.
基金supported in part by the Nature Science Foundation of China under Grant Nos.41875046,42175004National Key Research and Development Program of China under Grant No.2017YFC1501601Shanghai“Science and Technology Innovation Action Plan”Yangtze River Delta Science and Technology Innovation Community Field Project Grant 21002410200。
文摘A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region.
基金the National Natural Science Foundation of China (Grants No. 41176085 and 41075045), for financially supporting this research
文摘Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of ocean mesoscale eddy. An underwater acoustic modeI-MMPE was used to simulate the acoustic propagation under the influence of different types, different intensities and positions of eddies, and different frequencies and depths of sources. It is found that warm-core eddy can make the convergence zone "move back" and the width of it increases, while cold-core eddy can make the convergence zone "move forward" and the width of it decreases. The bigger the intensity of eddy, the more notable the "forward "or "back "effect. Sound source located depths and source frequencies can change the acoustic propagation characteristics in the eddy area.
基金supported by the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18)。
文摘Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.
基金Supported by the National Natural Science Foundation of China(No.41976012)the Key Research Program of Laoshan Laboratory(LSL)(No.LSKJ 202202502)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDB 42000000)。
文摘The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.