Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
Dynamic control of Airy beam has been attracting scientists’attention due to its potential applications in imaging,optical manipulation and laser manufacturing.However,traditional way of dynamic tuning of free space ...Dynamic control of Airy beam has been attracting scientists’attention due to its potential applications in imaging,optical manipulation and laser manufacturing.However,traditional way of dynamic tuning of free space Airy beam usually requires bulky optics and will inevitably limit its practical applications.To solve this issue,a recent work proposes to use a compact meta-device which consists of two cascaded dielectric metasurfaces working in the visible regime.展开更多
Metasurfaces are one of the most promising devices to break through the limitations of bulky optical components.By offering a new method of light manipulation based on the light-matter interaction in subwavelength nan...Metasurfaces are one of the most promising devices to break through the limitations of bulky optical components.By offering a new method of light manipulation based on the light-matter interaction in subwavelength nanostructures,metasurfaces enable the efficient manipulation of the amplitude,phase,polarization,and frequency of light and derive a series of possibilities for important applications.However,one key challenge for the realization of applications for meta-devices is how to fabricate large-scale,uniform nanostructures with high resolution.In this review,we review the state-of-the-art nanofabrication techniques compatible with the manufacture of meta-devices.Maskless lithography,masked lithography,and other nanofabrication techniques are highlighted in detail.We also delve into the constraints and limitations of the current fabrication methods while providing some insights on solutions to overcome these challenges for advanced nanophotonic applications.展开更多
Metasurfaces,composed of two-dimensional nanostructures,exhibit remarkable capabilities in shaping wavefronts,encompassing phase,amplitude,and polarization.This unique proficiency heralds a transformative paradigm shi...Metasurfaces,composed of two-dimensional nanostructures,exhibit remarkable capabilities in shaping wavefronts,encompassing phase,amplitude,and polarization.This unique proficiency heralds a transformative paradigm shift in the domain of next-generation optics and photonics,culminating in the development of flat and ultrathin optical devices.Particularly noteworthy is the all-dielectric-based metasurface,leveraging materials such as titanium dioxide,silicon,gallium arsenide,and silicon nitride,which finds extensive application in the design and implementation of high-performance optical devices,owing to its notable advantages,including a high refractive index,low ohmic loss,and cost-effectiveness.Furthermore,the remarkable growth in nanofabrication technologies allows for the exploration of new methods in metasurface fabrication,especially through wafer-scale nanofabrication technologies,thereby facilitating the realization of commercial applications for metasurfaces.This review provides a comprehensive overview of the latest advancements in state-of-the-art fabrication technologies in dielectric metasurface areas.These technologies,including standard nanolithography[e.g.,electron beam lithography(EBL)and focused ion beam(FIB)lithography],advanced nanolithography(e.g.,grayscale and scanning probe lithography),and large-scale nanolithography[e.g.,nanoimprint and deep ultraviolet(DUV)lithography],are utilized to fabricate highresolution,high-aspect-ratio,flexible,multilayer,slanted,and wafer-scale all-dielectric metasurfaces with intricate nanostructures.Ultimately,we conclude with a perspective on current cutting-edge nanofabrication technologies.展开更多
Chromatic aberration-free meta-devices(e.g.,achromatic meta-devices and abnormal chromatic meta-devices)play an essential role in modern science and technology.However,current efforts suffer the issues of low efficien...Chromatic aberration-free meta-devices(e.g.,achromatic meta-devices and abnormal chromatic meta-devices)play an essential role in modern science and technology.However,current efforts suffer the issues of low efficiency,narrow operating band,and limited wavefront manipulation capability.We propose a general strategy to design chromatic aberration-free meta-devices with high-efficiency and ultrabroadband properties,which is realized by satisfying the key criteria of desirable phase dispersion and high reflection amplitudes at the target frequency interval.The phase dispersion is tuned successfully based on a multiresonant Lorentz model,and high reflection is guaranteed by the presence of the metallic ground.As proof of the concept,two microwave meta-devices are designed,fabricated,and experimentally characterized.An achromatic meta-mirror is proposed within 8 to 12 GHz,and another abnormal chromatic meta-mirror can tune the reflection angle as a linear function.Both meta-mirrors exhibit very high efficiencies(85%to 94%in the frequency band).Our findings open a door to realize chromatic aberration-free meta-devices with high efficiency and wideband properties and stimulate the realizations of chromatic aberration-free metadevices with other functionalities or working at higher frequency.展开更多
Metasurfaces have exhibited great capabilities to control electromagnetic waves,and many multifunctional metasurfaces were recently proposed.However,although angle-multiplexed meta-devices were successfully realized i...Metasurfaces have exhibited great capabilities to control electromagnetic waves,and many multifunctional metasurfaces were recently proposed.However,although angle-multiplexed meta-devices were successfully realized in reflection geometries,their transmission-mode counterparts are difficult to achieve due to the additional requirements.Here,we design and fabricate a transmissive angle-multiplexed meta-polarizer in the microwave regime based on a multilayer metasurface.Coupled-mode-theory analyses reveal that the device exhibits distinct angle-dependent transmissive responses under excitations with different polarizations,and such differences are further enhanced by multiple scatterings inside the device.Microwave experimental results are in good agreement with numerical simulations and theoretical analyses.展开更多
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
文摘Dynamic control of Airy beam has been attracting scientists’attention due to its potential applications in imaging,optical manipulation and laser manufacturing.However,traditional way of dynamic tuning of free space Airy beam usually requires bulky optics and will inevitably limit its practical applications.To solve this issue,a recent work proposes to use a compact meta-device which consists of two cascaded dielectric metasurfaces working in the visible regime.
基金support from the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.AoE/P-502/20,CRF Project:C1015-21EC5031-22G,and GRF Project:CityU15303521,CityU11305223,CityU11310522,CityU11300123]+5 种基金the Department of Science and Technology of Guangdong Province[Project No.2020B1515120073]City University of Hong Kong[Project No.9380131,9610628,and 7005867]S.M.Xiao acknowledges financial support from National Key R&D Program of China(Grant Nos.2021YFA1400802)the National Natural Science Foundation of China(Grant Nos.62125501,and 6233000076)Fundamental Research Funds for the Central Universities(Grant No.2022FRRK030004Shenzhen Fundamental Research Projects(Grant Nos.JCYJ20220818102218040).
文摘Metasurfaces are one of the most promising devices to break through the limitations of bulky optical components.By offering a new method of light manipulation based on the light-matter interaction in subwavelength nanostructures,metasurfaces enable the efficient manipulation of the amplitude,phase,polarization,and frequency of light and derive a series of possibilities for important applications.However,one key challenge for the realization of applications for meta-devices is how to fabricate large-scale,uniform nanostructures with high resolution.In this review,we review the state-of-the-art nanofabrication techniques compatible with the manufacture of meta-devices.Maskless lithography,masked lithography,and other nanofabrication techniques are highlighted in detail.We also delve into the constraints and limitations of the current fabrication methods while providing some insights on solutions to overcome these challenges for advanced nanophotonic applications.
基金supported by the National Key Research and Development Project of China (Nos.2022YFA1404700,2023YFB2806700,and 2021YFA1400802)National Natural Science Foundation of China (Nos.6233000076,12334016,12025402,62125501,11934012,12261131500,92250302,and 62375232)+3 种基金Shenzhen Fundamental Research Project (Nos.JCYJ20210324120402006,JCYJ20220818102218040,and GXWD20220817145518001)University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China (Project No.AoE/P-502/20,CRF Project Nos.C5031-22G and C1015-21E,GRF Project Nos.CityU15303521 and CityU11305223and Germany/Hong Kong Joint Research Scheme:GCityU101/22)Project of City University of Hong Kong (Nos.9380131,9610628,and 7005867).
文摘Metasurfaces,composed of two-dimensional nanostructures,exhibit remarkable capabilities in shaping wavefronts,encompassing phase,amplitude,and polarization.This unique proficiency heralds a transformative paradigm shift in the domain of next-generation optics and photonics,culminating in the development of flat and ultrathin optical devices.Particularly noteworthy is the all-dielectric-based metasurface,leveraging materials such as titanium dioxide,silicon,gallium arsenide,and silicon nitride,which finds extensive application in the design and implementation of high-performance optical devices,owing to its notable advantages,including a high refractive index,low ohmic loss,and cost-effectiveness.Furthermore,the remarkable growth in nanofabrication technologies allows for the exploration of new methods in metasurface fabrication,especially through wafer-scale nanofabrication technologies,thereby facilitating the realization of commercial applications for metasurfaces.This review provides a comprehensive overview of the latest advancements in state-of-the-art fabrication technologies in dielectric metasurface areas.These technologies,including standard nanolithography[e.g.,electron beam lithography(EBL)and focused ion beam(FIB)lithography],advanced nanolithography(e.g.,grayscale and scanning probe lithography),and large-scale nanolithography[e.g.,nanoimprint and deep ultraviolet(DUV)lithography],are utilized to fabricate highresolution,high-aspect-ratio,flexible,multilayer,slanted,and wafer-scale all-dielectric metasurfaces with intricate nanostructures.Ultimately,we conclude with a perspective on current cutting-edge nanofabrication technologies.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos.61871394,61901512,11604167,61625502,11961141010,61975176, 62071423Postdoctoral Innovation Talents Support Program of China under Grant No.BX20190293, Natural Science Foundation of Shaanxi Province under Grant No.2019JQ-013.
文摘Chromatic aberration-free meta-devices(e.g.,achromatic meta-devices and abnormal chromatic meta-devices)play an essential role in modern science and technology.However,current efforts suffer the issues of low efficiency,narrow operating band,and limited wavefront manipulation capability.We propose a general strategy to design chromatic aberration-free meta-devices with high-efficiency and ultrabroadband properties,which is realized by satisfying the key criteria of desirable phase dispersion and high reflection amplitudes at the target frequency interval.The phase dispersion is tuned successfully based on a multiresonant Lorentz model,and high reflection is guaranteed by the presence of the metallic ground.As proof of the concept,two microwave meta-devices are designed,fabricated,and experimentally characterized.An achromatic meta-mirror is proposed within 8 to 12 GHz,and another abnormal chromatic meta-mirror can tune the reflection angle as a linear function.Both meta-mirrors exhibit very high efficiencies(85%to 94%in the frequency band).Our findings open a door to realize chromatic aberration-free meta-devices with high efficiency and wideband properties and stimulate the realizations of chromatic aberration-free metadevices with other functionalities or working at higher frequency.
基金supported by the National Natural Science Foundation of China(Nos.11734007,62192771,and 91850101)National Key Research and Development Program of China(Nos.2017YFA0303504 and 2020YFA0710100)Natural Science Foundation of Shanghai(No.20JC1414601)。
文摘Metasurfaces have exhibited great capabilities to control electromagnetic waves,and many multifunctional metasurfaces were recently proposed.However,although angle-multiplexed meta-devices were successfully realized in reflection geometries,their transmission-mode counterparts are difficult to achieve due to the additional requirements.Here,we design and fabricate a transmissive angle-multiplexed meta-polarizer in the microwave regime based on a multilayer metasurface.Coupled-mode-theory analyses reveal that the device exhibits distinct angle-dependent transmissive responses under excitations with different polarizations,and such differences are further enhanced by multiple scatterings inside the device.Microwave experimental results are in good agreement with numerical simulations and theoretical analyses.