Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically c...Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically conserved, extracellular orthosteric binding site and a more variable allosteric binding site, located on the heptahelical transmembrane domain. The mGluR5 receptor has proved to be a key pharmacological target in conditions affecting the central nervous system (CNS) but its presence outside the CNS underscores its potential role in pathologies affecting peripheral organs such as the gastrointestinal (GI) tract and accessory digestive organs such as the tongue, liver and pancreas. Following identification of mGluR5s in the mouth, various studies have subsequently demonstrated its involvement in mechanical allodynia, inflammation, pain and oral cancer. mGluR5 expression has also been identified in gastroesophageal vagal pathways. Indeed, experimental and human studies have demonstrated that mGluR5 blockade reduces transient lower sphincter relaxation and reflux episodes. In the intestine, mGluR5s have been shown to be involved in the control of intestinal inflammation, visceral pain and the epithelial barrier function. In the liver, mGluR5s have a permissive role in the onset of ischemic injury in rat and mice hepatocytes. Conversely, livers from mice treated with selective negative allosteric modulators and mGluR5 knockout mice are protected against ischemic injury. Similar results have been observed in experimental models of free-radical injury and in vivo mouse models of acetaminophen intoxication. Finally, mGluR5s in the pancreas are associated with insulin secretion control. The picture is, however, far from complete as the review attempts to establish in particular as regards identifying specific targets and innovative therapeutic approaches for the treatment of GI disorders.展开更多
AIM: To screen for genes related to metabotropic re- ceptors that might be involved in the development of chronic hepatitis. METHODS: Assessment of 20 genes associated with metabotropic receptors was performed in li...AIM: To screen for genes related to metabotropic re- ceptors that might be involved in the development of chronic hepatitis. METHODS: Assessment of 20 genes associated with metabotropic receptors was performed in liver speci- mens obtained by punch biopsy from 12 patients with autoimmune and chronic hepatitis type B and C. For this purpose, a microarray with low integrity grade and with oligonucleotide DNA probes complementary to target transcripts was used. Evaluation of gene expression was performed in relation to transcript level, correlation between samples and grouping of clinical parameters used in chronic hepatitis assessment. Clini- cal markers of chronic hepatitis included alanine and aspartate aminotransferase, ~,-glutamyltranspeptidase, alkaline phosphatase and cholinesterase activity, levels of iron ions, total cholesterol, triglycerides, albumin, glucose, hemoglobin, platelets, histological analysis of inflammatory and necrotic status, fibrosis according to METAVIR score, steatosis, as well as anthropometric body mass index, waist/hip index, percentage of adi- pose tissue and liver size in ultrasound examination. Gender, age, concomitant diseases and drugs were also taken into account. Validation of oligonucleotide microarray gene expression results was done with the use of quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The highest (0.002 〈 P 〈 0.046) expres- sion among genes encoding main components of metabotropic receptor pathways, such as the a subunit of G-coupled protein, phosphoinositol-dependent pro- tein kinase or arrestin was comparable to that of an- giotensinogen synthesized in the liver. Carcinogenesis suppressor genes, such as chemokine ligand 4, tran- scription factor early growth response protein 1 and lysophosphatidic acid receptor, were characterized by the lowest expression (0.002 〈 P 〈 0.046), while the factor potentially triggering hepatic cancer, transcrip- tion factor JUN-B, had a 20-fold higher expression. The correlation between expression of genes of protein kinases PDPK1, phosphoinositide 3-kinase and protein kinase A (Spearman's coefficient range: 0.762-0.769) confirmed a functional link between these enzymes. Gender (P = 0.0046) and inflammation severity, mea- sured by alanine aminotransferase activity (P = 0.035), were characterized by diverse metabotropic receptor gene expression patterns. The Pearson's coefficient ranging from -0.35 to 0.99 from the results of qRT-PCR and microarray indicated that qRT-PCR had certainlimitations as a validation tool for oligonucleotide mi- croarray studies. CONCLUSION: A microarray-based analysis of hepa- tocyte metabotropic G-protein-related gene expression can reveal the molecular basis of chronic hepatitis.展开更多
Metabotropic glutamate receptor 5 (mGluR5) is expressed by neurons in zones of active neurogenesis and is involved in the development of neural stem cells in vivo and in vitro. We examined the expression of mGluR5 i...Metabotropic glutamate receptor 5 (mGluR5) is expressed by neurons in zones of active neurogenesis and is involved in the development of neural stem cells in vivo and in vitro. We examined the expression of mGluR5 in the cortex and hippocampus of rats during various prenatal and postnatal periods using immunohistochemistry. During prenatal development, mGluR5 was pdmadly localized to neuronal somas in the forebrain. During early postnatal periods, the receptor was mainly present on somas in the cortex, mGluR5 immunostaining was visible in apical dendrites and in the neuropil of neurons and persisted throughout postnatal development. During this period, pyramidal neurons were strongly labeled for the receptor. In the hippocampal CA1 region, mGluR5 immunoreactivity was more intense in the stratum oriens, stratum radiatum, and lacunosum moleculare at P0, P5 and P10 relative to P60. mGluR5 expression increased significantly in the molecular layer and decreased significantly in the granule cell layer of the dentate gyrus at P5, P10 and P60 in comparison with P0. Furthermore, some mGluR5-positive cells were also bromodeoxyuridine- or NeuroD-positive in the dentate gyrus at P14. These results demonstrate that mGluR5 has a differential expression pattern in the cortex and hippocampus during early growth, suggesting a role for this receptor in the control of domain specific brain developmental events.展开更多
The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor la mRNA and protein were...The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor la mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor la, (RS)-l-aminoindan-1,5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.展开更多
The present study established a rat cortical neuronal model of in vitro mechanical injury. At 30 minutes after injury, the survival rate of the injured cortical neurons was decreased compared with normal neurons, and ...The present study established a rat cortical neuronal model of in vitro mechanical injury. At 30 minutes after injury, the survival rate of the injured cortical neurons was decreased compared with normal neurons, and was gradually decreased with aggravated degree of injury. Reverse transcription-polymerase chain reaction results showed that at 1 hour after injury, there was increased expression of metabotropic glutamate receptor la in cortical neurons. Immunohistochemical staining results showed that at 30 minutes after injury, the number of metabotropic glutamate receptor 1a-positive cells increased compared with normal neurons. At 12 hours after injury, lactate dehydrogenase activity in the (RS)-l-aminoindan-1, 5-dicarboxylic acid (AIDA)-treated injury neurons was si[jnificantly decreased than that in the pure injury group. At 1 hour after injury, intracellular free Ca"+ concentration was markedly decreased in the AIDA-treated injury neurons than that in the pure injury neurons. These findings suggest that after mechanical injury to cortical neurons, metabotropic glutamate receptor la expression increased. The resulting increase in intracellular free Ca2+ concentration was blocked by AIDA, indicating that AIDA exhibits neuroprotective effects after mechanical injury.展开更多
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substa...Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra.Therefore,the study of the mechanisms,as well as the search for new targets for the prevention and treatment of neurodegenerative diseases,is an important focus of modern neuroscience.PD is primarily caused by dysfunction of dopaminergic neurons;however,other neurotransmitter systems are also involved.Research reports have indicated that the glutamatergic system is involved in different pathological conditions,including dopaminergic neurotoxicity.Over the last two decades,the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors(mGluRs)in the development of extrapyramidal disorders.However,the specific mechanisms driving these processes are presently unclear.The participation of the universal neuronal messenger nitric oxide(NO)in the mechanisms of dopaminergic neurotoxicity has attracted increased attention.The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity.More precisely,we focused on studies conducted on the rotenone-induced PD model.This review is also an outline of our own results obtained using the method of electron paramagnetic resonance,which allows quantitation of NO radicals in brain structures.展开更多
Metabotropic glutamate receptor 7, coupled with a chemical neurotransmitter L-glutamate, plays an important role in the development of many psychiatric and neurological disorders. To study the biological and genetic m...Metabotropic glutamate receptor 7, coupled with a chemical neurotransmitter L-glutamate, plays an important role in the development of many psychiatric and neurological disorders. To study the biological and genetic mechanism of the mGluR7-related diseases, a physical map covering the full-length mGluR7 genomic sequence has been constructed through seed clone screening and fingerprinting database searching. These BAC clones in the physical map have been sequenced with shotgun strategy and assembled by Phred-Phrap-Consed software; the error rate of the final genoniic sequence is less than 0.01%. mGluR7 spans 880 kb genoniic region, the GC content and repeat content of mGluR7 genoniic sequence are 38% and 37.5% respectively. mGluR7 has a typical 'house-keeping' promoter and consists of 11 exons, with introns ranging from 6 kb to 285 kb. mGluR7a and mGluR7b are two known alternatively splicing variants. Comparing the genomic structures of extracellular domains of mGluR family, their genomic structures can展开更多
Objective: To observe the changes of metabotropic glutamate receptor 1a in rat brain in a rodent model of diffuse head injury with secondary insults and the effects of 2 methyl 4 carboxyphenylglycine (MCPG). Methods: ...Objective: To observe the changes of metabotropic glutamate receptor 1a in rat brain in a rodent model of diffuse head injury with secondary insults and the effects of 2 methyl 4 carboxyphenylglycine (MCPG). Methods: Based on Marmarous rodent model of diffuse brain injury (DBI), hypotension was made by blood withdrawal as secondary brain insults (SBI). 105 male SD rats were randomized into A and B groups. The changes of mGluR 1a in cerebral cortex were studied by immunohistochemistry and the effect of MCPG by HE. Each group was divided into different subgroups at different time after injury. Results: Compared with that of sham group, the number of mGluR 1a positive neuron increased by 12.9±3.2 (P< 0.05 ) 1 day after injury in the injured cerebral cortex in DBI group. However, in DBI and SBI group there was a more significant increase in the number of mGluR 1a positive neuron at 4 hours after injury ( 15.6±3.0 , P< 0.05 )and then the number of mGluR 1a positive neuron gradually decreased. Administration of MCPG reduced total cortical necrotic neurons counts on the 7th day after injury ( 5.21±2.52 , P< 0.05 ). Conclusions: Brain injury can increase the gene expression of mGluR 1a and the role of mGluR 1a may be a key factor in the aggravation of head injury with SBI, and that MCPG may have therapeutic potential in head injury.展开更多
Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction.Accumulating data have demonstrated roles of ionotropic glutamate receptors and groupⅠandⅡmetabot...Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction.Accumulating data have demonstrated roles of ionotropic glutamate receptors and groupⅠandⅡmetabotropic glutamate receptors(mGluRs)in this event.Emerging evidence also identifies Gαi/o-coupled groupⅢmGluRs(mGluR4/7/8 subtypes enriched in the limbic system)as direct substrates of drugs of abuse and active regulators of drug action.Auto-and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways,respectively.These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis.In response to operant administration of common addictive drugs,such as psychostimulants(cocaine and amphetamine),alcohol and opiates,limbic groupⅢmGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior.As a result,a loss-of-function mutation(knockout)of individual groupⅢreceptor subtypes often promotes drug seeking.This review summarizes the data from recent studies on three groupⅢreceptor subtypes(mGluR4/7/8)expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs(psychostimulants,alcohol,and opiates).展开更多
Objective Metabotropic glutamate receptor 5 (mGluR5) is concentrated in zones of active neurogenesis in the prenatal and postnatal rodent brain and plays an important role in the regulation of neurogenesis. However,...Objective Metabotropic glutamate receptor 5 (mGluR5) is concentrated in zones of active neurogenesis in the prenatal and postnatal rodent brain and plays an important role in the regulation of neurogenesis. However, little is known about mGluR5 in the prenatal human brain. Here, we aimed to explore the expression pattern and cellular distribution of mGluR5 in human fetal hippocampus. Methods Thirty-four human fetuses were divided into four groups according to gestational age: 9-11, 14-16, 22-24 and 32-36 weeks. The hippocampus was dissected out and prepared. The protein and mRNA expression of mGluR5 were evaluated by Western blot and immunohistochemistry or real-time PCR. The cellular distribution of mGluR5 was observed with double-labeling immunofluorescence. Results Both mGluR5 mRNA and protein were detected in the prenatal human hippocampus by real-time PCR and immunoblotting, and the expression levels increased gradually over time. The immunohistochemistry results were consistent with immunoblotting and showed that mGluR5 immunoreactivity was mainly present in the inner marginal zone (IMZ), hippocampal plate (HP) and ventricular zone (VZ). The double-labeling immunoftuorescence showed that mGluR5 was present in neural stem cells (nestin-positive), neuroblasts (DCX-positive) and mature neurons (NeuN-positive), but not in typical astrocytes (GFAP- positive). The cells co-expressing mGluR5 and nestin were mainly located in the IMZ, HP and subplate at 11 weeks, all layers at 16 weeks, and CA 1 at 24 weeks. As development proceeded, the number of mGluR5/nestin double-positive cells decreased gradually so that there were only a handful of double-labeled cells at 32 weeks. However, mGluR5/DCX double-positive cells were only found in the HP, IZ and IMZ at 11 weeks. Conclusion The pattern ofmGluR5 expression by neural stern/progenitor cells, neuroblasts and neurons provides important anatomical evidence for the role of mGluR5 in the regulation of human hippocampal development.展开更多
Objective: To examine the changes in the express ion of mGluR4 after diffuse brain injury (DBI) and to determine the role of its specific agonist L-2-amino-4-phosphonobutyrate (L-AP4) in vivo. Methods: A total of 161 ...Objective: To examine the changes in the express ion of mGluR4 after diffuse brain injury (DBI) and to determine the role of its specific agonist L-2-amino-4-phosphonobutyrate (L-AP4) in vivo. Methods: A total of 161 male SD rats were randomized into the f ollowing groups. Group A included normal control,sham-operated control and DBI group. DBI was produced according to Marmarous diffuse head injury model. mRN A expression of mGluR4 was detected by hybridization in situ. Group B included D BI alone,DBI treated with normal saline and DBI treated with L-AP4. All DBI ra ts were trained in a series of performance tests,following which they were subj ected to DBI. At 1 and 12 hours,animals were injected intraventricularly with L -AP4 ( 100 mmol/L ,10 μl) or normal saline. Motor and cognitive performance s were tested at 1,3,7,14 days after injury and the damaged neurons were also detected. Results: There was no significant difference between normal con trol group and sham-operated group in the expression of mGluR4 ( P > 0.05 ) . The animals exposed to DBI showed significantly increased expression of mRNA o f mGluR4 compared with the sham-operated animals 1 h after injury ( P < 0.05 ). At 6 hours,the evolution of neuronal expression of mGluR4 in the trauma al one group was relatively static. Compared with saline-treated control animals,rats treated with L-AP4 showed an effective result of decreased number of damag ed neurons and better motor and cognitive performances.Conclusions: Increased expression of mGluR4 is important in the pathophysiological process of DBI and its specific agonist L-AP4 can provide r emarkable neuroprotection against DBI not only at the histopathological level bu t also in the motor and cognitive performance.展开更多
The synthetic studies for some known modulators of metabotropic glutamate receptors (mGluRs) such as (S)-αM4CPG, (1S,3R)-ACPD, L-CCG-I are described. Based on the structure of αM4CPG several new conformationally con...The synthetic studies for some known modulators of metabotropic glutamate receptors (mGluRs) such as (S)-αM4CPG, (1S,3R)-ACPD, L-CCG-I are described. Based on the structure of αM4CPG several new conformationally constrained analogues are design ed and synthesized. Among them APICA is a selective antagonist for group II mGluRs. Also, a new benzolactam-V8 analogue is found to have better isoform-selectivity for protein kine C family. Three different protocols for synthesizing benzolactam-VS analogues are developed to meet the requirement for delivering more analogues to test.展开更多
Cognitive decline in Alzheimer’s disease correlates with the extent of tau pathology,in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the...Cognitive decline in Alzheimer’s disease correlates with the extent of tau pathology,in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus.Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-βor long-term depression,a form of synaptic weakening involved in learning and memory,share similar mechanisms.Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging.Conversely,certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau,in particular,phosphorylation at residue Ser396.Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau(hyper)phosphorylation.We first summarize experimental evidence regarding tau-long-term depression interactions,followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer’s disease.Finally,we conclude with some thoughts and perspectives on future research about these interactions.展开更多
Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the transl...Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the translation of its binding RNA, thus regulate several signaling pathways. Many FXS patients show high susceptibility to epilepsy. Epilepsy is a chronic neurological disorder which is characterized by the recurrent appearance of spontaneous seizures due to neuronal hyperactivity in the brain. Both the abnormal activation of several signaling pathway and morphological abnormality that are caused by the loss of FMRP can lead to a high susceptibility to epilepsy. Combining with the research progresses on both FXS and epilepsy, we outlined the possible mechanisms of high susceptibility to epilepsy in FXS and tried to give a prospect on the future research on the mechanism of epilepsy that happened in other mental retardations.展开更多
In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwan...In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwann cells that are ideally placed to respond to,and possibly shape,axonal activity.The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells,as well as signalling via diffusible substances.Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves.Two types of experimental findings support this idea:first,glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves;second,axons and Schwann cells in the peripheral nerves express glutamate receptors.Yet,the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing.Remarkably,in the central nervous system,axons and myelinating glia are involved in glutamatergic signalling.This signalling occurs via different mechanisms,the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells.Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation,migration,and differentiation of oligodendrocyte precursor cells,survival of oligodendrocytes,and re-myelination of axons after damage.Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves?What is the functional role of glutamate receptors in the peripheral nerves?Is activation of glutamate receptors in the nerves beneficial or harmful during diseases?In this review,we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves.We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.展开更多
BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the...BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the effects of intraplantar and intrathecal injection of Glu on c-Fos expression in the L5 spinal cord dorsal horn Ⅰ/Ⅱ and Ⅲ/Ⅳ layers after spinal nerve ligation, and to study the effects of the N-methyI-D-aspartic acid (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoate (D-AP5), and a selective group I mGluR antagonist, 7-hydroyiminocyclo propan[a]chromen-lacarboxylic acid ethyl ester (cpccoEt). DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Pharmacology, Oral Anatomy, and Neurobiology, Osaka University Graduate School of Dentistry, from December 2005 to December 2006. MATERIALS: Glu (5 μmol), D-AP5 (50 nmot) and cpccoEt (250 nmol) were provided by Wako Pure Chemical Industries, Osaka, Japan, and diluted in saline (50 μL). The pH of all solutions was adjusted to 7.4. METHODS: Twelve rats were randomly divided into sham operation (n = 6) and spinal nerve ligation (SNL; n = 6) groups for behavioral assessments of neuropathic pain after ligation surgery of the left L5-6 nerve segment. Another 60 rats were randomly divided into sham operation, SNL, saline-intraplantar, saline-intrathecal, Glu-intraplantar, Glu-intrathecal, D-AP5-intrathecal, Glu-D-AP5-intrathecal, cpccoEt-intrathecal, and Glu-cpccoEt-intrathecal groups, with 6 rats in each group. All groups except sham operation group received a similar SNL. On day 14, rats received a 50-μL injection of saline, Glu, D-AP5, and/or cpccoEt into the left intraplantar or intrathecal L5-4 segments. MAIN OUTCOME MEASURES: The number of c-Fos positive neurons in both Ⅰ/Ⅱ and Ⅲ/Ⅳ spinal layers at L6 was observed using immunohistochemistry 2 hours after administration. RESULTS: (1) SNL increased the level of c-Fos expression in two sides of the spinal cord, particularly on Ⅲ/Ⅳ spinal layers of the ligated side. (2) Intraplantar or intrathecal administration of saline significantly increased the c-Fos labeled neurons in Ⅰ/Ⅱ spinal layers of the ligated side, compared with SNL alone (P 〈 0.01). (3) Intraplantar Glu (5 μmol) increased the number of c-Fos positive neurons in Ⅰ/Ⅱ spinal layers compared with intraplantar saline (P〈 0.01). (4) The number of c-Fos neurons in Ⅰ/Ⅱ spinal layers on both the ipsilateral and contralateral side after intraplantar Glu was lower than intrathecal Glu (P〈 0.01), with a 3-fold higher induction by intrathecal Glu. (5) Co-administration of D-AP5 or cpccoEt reduced the effects of intrathecal Glu (P 〈 0.01). CONCLUSION: Intrathecal Glu increases c-Fos expression more than intraplantar Glu. Antagonists of NMDA and group I mGluRs block this effect.展开更多
Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the ...Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE.展开更多
Insufficient sleep has been correlated to many physiological and psychoneurological disorders.Over the years,our understanding of the state of sleep has transcended from an inactive period of rest to a more active sta...Insufficient sleep has been correlated to many physiological and psychoneurological disorders.Over the years,our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes.In addition,during sleep,electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system(CNS).Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour.Memory consolidation and learning that take place during sleep cycles,can be affected by changes in synaptic plasticity during sleep disturbances.G-protein coupled receptors(GPCRs),with their versatile structural and functional attributes,can regulate synaptic plasticity in CNS and hence,may be potentially affected in sleep deprived conditions.In this review,we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions.展开更多
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
基金Supported by Italian ministry of University,Research and Instruction
文摘Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically conserved, extracellular orthosteric binding site and a more variable allosteric binding site, located on the heptahelical transmembrane domain. The mGluR5 receptor has proved to be a key pharmacological target in conditions affecting the central nervous system (CNS) but its presence outside the CNS underscores its potential role in pathologies affecting peripheral organs such as the gastrointestinal (GI) tract and accessory digestive organs such as the tongue, liver and pancreas. Following identification of mGluR5s in the mouth, various studies have subsequently demonstrated its involvement in mechanical allodynia, inflammation, pain and oral cancer. mGluR5 expression has also been identified in gastroesophageal vagal pathways. Indeed, experimental and human studies have demonstrated that mGluR5 blockade reduces transient lower sphincter relaxation and reflux episodes. In the intestine, mGluR5s have been shown to be involved in the control of intestinal inflammation, visceral pain and the epithelial barrier function. In the liver, mGluR5s have a permissive role in the onset of ischemic injury in rat and mice hepatocytes. Conversely, livers from mice treated with selective negative allosteric modulators and mGluR5 knockout mice are protected against ischemic injury. Similar results have been observed in experimental models of free-radical injury and in vivo mouse models of acetaminophen intoxication. Finally, mGluR5s in the pancreas are associated with insulin secretion control. The picture is, however, far from complete as the review attempts to establish in particular as regards identifying specific targets and innovative therapeutic approaches for the treatment of GI disorders.
文摘AIM: To screen for genes related to metabotropic re- ceptors that might be involved in the development of chronic hepatitis. METHODS: Assessment of 20 genes associated with metabotropic receptors was performed in liver speci- mens obtained by punch biopsy from 12 patients with autoimmune and chronic hepatitis type B and C. For this purpose, a microarray with low integrity grade and with oligonucleotide DNA probes complementary to target transcripts was used. Evaluation of gene expression was performed in relation to transcript level, correlation between samples and grouping of clinical parameters used in chronic hepatitis assessment. Clini- cal markers of chronic hepatitis included alanine and aspartate aminotransferase, ~,-glutamyltranspeptidase, alkaline phosphatase and cholinesterase activity, levels of iron ions, total cholesterol, triglycerides, albumin, glucose, hemoglobin, platelets, histological analysis of inflammatory and necrotic status, fibrosis according to METAVIR score, steatosis, as well as anthropometric body mass index, waist/hip index, percentage of adi- pose tissue and liver size in ultrasound examination. Gender, age, concomitant diseases and drugs were also taken into account. Validation of oligonucleotide microarray gene expression results was done with the use of quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The highest (0.002 〈 P 〈 0.046) expres- sion among genes encoding main components of metabotropic receptor pathways, such as the a subunit of G-coupled protein, phosphoinositol-dependent pro- tein kinase or arrestin was comparable to that of an- giotensinogen synthesized in the liver. Carcinogenesis suppressor genes, such as chemokine ligand 4, tran- scription factor early growth response protein 1 and lysophosphatidic acid receptor, were characterized by the lowest expression (0.002 〈 P 〈 0.046), while the factor potentially triggering hepatic cancer, transcrip- tion factor JUN-B, had a 20-fold higher expression. The correlation between expression of genes of protein kinases PDPK1, phosphoinositide 3-kinase and protein kinase A (Spearman's coefficient range: 0.762-0.769) confirmed a functional link between these enzymes. Gender (P = 0.0046) and inflammation severity, mea- sured by alanine aminotransferase activity (P = 0.035), were characterized by diverse metabotropic receptor gene expression patterns. The Pearson's coefficient ranging from -0.35 to 0.99 from the results of qRT-PCR and microarray indicated that qRT-PCR had certainlimitations as a validation tool for oligonucleotide mi- croarray studies. CONCLUSION: A microarray-based analysis of hepa- tocyte metabotropic G-protein-related gene expression can reveal the molecular basis of chronic hepatitis.
基金the National Natural Science Foundation of China,No.30500575,30770673,81070998Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education MinistryTechnology Plan of Shaanxi Province,No.2009K01-80
文摘Metabotropic glutamate receptor 5 (mGluR5) is expressed by neurons in zones of active neurogenesis and is involved in the development of neural stem cells in vivo and in vitro. We examined the expression of mGluR5 in the cortex and hippocampus of rats during various prenatal and postnatal periods using immunohistochemistry. During prenatal development, mGluR5 was pdmadly localized to neuronal somas in the forebrain. During early postnatal periods, the receptor was mainly present on somas in the cortex, mGluR5 immunostaining was visible in apical dendrites and in the neuropil of neurons and persisted throughout postnatal development. During this period, pyramidal neurons were strongly labeled for the receptor. In the hippocampal CA1 region, mGluR5 immunoreactivity was more intense in the stratum oriens, stratum radiatum, and lacunosum moleculare at P0, P5 and P10 relative to P60. mGluR5 expression increased significantly in the molecular layer and decreased significantly in the granule cell layer of the dentate gyrus at P5, P10 and P60 in comparison with P0. Furthermore, some mGluR5-positive cells were also bromodeoxyuridine- or NeuroD-positive in the dentate gyrus at P14. These results demonstrate that mGluR5 has a differential expression pattern in the cortex and hippocampus during early growth, suggesting a role for this receptor in the control of domain specific brain developmental events.
文摘The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor la mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor la, (RS)-l-aminoindan-1,5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.
文摘The present study established a rat cortical neuronal model of in vitro mechanical injury. At 30 minutes after injury, the survival rate of the injured cortical neurons was decreased compared with normal neurons, and was gradually decreased with aggravated degree of injury. Reverse transcription-polymerase chain reaction results showed that at 1 hour after injury, there was increased expression of metabotropic glutamate receptor la in cortical neurons. Immunohistochemical staining results showed that at 30 minutes after injury, the number of metabotropic glutamate receptor 1a-positive cells increased compared with normal neurons. At 12 hours after injury, lactate dehydrogenase activity in the (RS)-l-aminoindan-1, 5-dicarboxylic acid (AIDA)-treated injury neurons was si[jnificantly decreased than that in the pure injury group. At 1 hour after injury, intracellular free Ca"+ concentration was markedly decreased in the AIDA-treated injury neurons than that in the pure injury neurons. These findings suggest that after mechanical injury to cortical neurons, metabotropic glutamate receptor la expression increased. The resulting increase in intracellular free Ca2+ concentration was blocked by AIDA, indicating that AIDA exhibits neuroprotective effects after mechanical injury.
文摘Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra.Therefore,the study of the mechanisms,as well as the search for new targets for the prevention and treatment of neurodegenerative diseases,is an important focus of modern neuroscience.PD is primarily caused by dysfunction of dopaminergic neurons;however,other neurotransmitter systems are also involved.Research reports have indicated that the glutamatergic system is involved in different pathological conditions,including dopaminergic neurotoxicity.Over the last two decades,the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors(mGluRs)in the development of extrapyramidal disorders.However,the specific mechanisms driving these processes are presently unclear.The participation of the universal neuronal messenger nitric oxide(NO)in the mechanisms of dopaminergic neurotoxicity has attracted increased attention.The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity.More precisely,we focused on studies conducted on the rotenone-induced PD model.This review is also an outline of our own results obtained using the method of electron paramagnetic resonance,which allows quantitation of NO radicals in brain structures.
基金This work was supported by the "863" Program of the MOSC (Grant No. 863-J19) the Creative Program of the Chinese Academy of Sciences (Grant No. KSCX1-D4).
文摘Metabotropic glutamate receptor 7, coupled with a chemical neurotransmitter L-glutamate, plays an important role in the development of many psychiatric and neurological disorders. To study the biological and genetic mechanism of the mGluR7-related diseases, a physical map covering the full-length mGluR7 genomic sequence has been constructed through seed clone screening and fingerprinting database searching. These BAC clones in the physical map have been sequenced with shotgun strategy and assembled by Phred-Phrap-Consed software; the error rate of the final genoniic sequence is less than 0.01%. mGluR7 spans 880 kb genoniic region, the GC content and repeat content of mGluR7 genoniic sequence are 38% and 37.5% respectively. mGluR7 has a typical 'house-keeping' promoter and consists of 11 exons, with introns ranging from 6 kb to 285 kb. mGluR7a and mGluR7b are two known alternatively splicing variants. Comparing the genomic structures of extracellular domains of mGluR family, their genomic structures can
文摘Objective: To observe the changes of metabotropic glutamate receptor 1a in rat brain in a rodent model of diffuse head injury with secondary insults and the effects of 2 methyl 4 carboxyphenylglycine (MCPG). Methods: Based on Marmarous rodent model of diffuse brain injury (DBI), hypotension was made by blood withdrawal as secondary brain insults (SBI). 105 male SD rats were randomized into A and B groups. The changes of mGluR 1a in cerebral cortex were studied by immunohistochemistry and the effect of MCPG by HE. Each group was divided into different subgroups at different time after injury. Results: Compared with that of sham group, the number of mGluR 1a positive neuron increased by 12.9±3.2 (P< 0.05 ) 1 day after injury in the injured cerebral cortex in DBI group. However, in DBI and SBI group there was a more significant increase in the number of mGluR 1a positive neuron at 4 hours after injury ( 15.6±3.0 , P< 0.05 )and then the number of mGluR 1a positive neuron gradually decreased. Administration of MCPG reduced total cortical necrotic neurons counts on the 7th day after injury ( 5.21±2.52 , P< 0.05 ). Conclusions: Brain injury can increase the gene expression of mGluR 1a and the role of mGluR 1a may be a key factor in the aggravation of head injury with SBI, and that MCPG may have therapeutic potential in head injury.
文摘Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction.Accumulating data have demonstrated roles of ionotropic glutamate receptors and groupⅠandⅡmetabotropic glutamate receptors(mGluRs)in this event.Emerging evidence also identifies Gαi/o-coupled groupⅢmGluRs(mGluR4/7/8 subtypes enriched in the limbic system)as direct substrates of drugs of abuse and active regulators of drug action.Auto-and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways,respectively.These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis.In response to operant administration of common addictive drugs,such as psychostimulants(cocaine and amphetamine),alcohol and opiates,limbic groupⅢmGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior.As a result,a loss-of-function mutation(knockout)of individual groupⅢreceptor subtypes often promotes drug seeking.This review summarizes the data from recent studies on three groupⅢreceptor subtypes(mGluR4/7/8)expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs(psychostimulants,alcohol,and opiates).
基金supported by grants from the National Natural Science Foundation of China(81070998)the Youth Fund of the College of Medicine,Xi'an Jiaotong University(YQN0802)the Fundamental Research Funds for the Central Universities (xjj2011022)
文摘Objective Metabotropic glutamate receptor 5 (mGluR5) is concentrated in zones of active neurogenesis in the prenatal and postnatal rodent brain and plays an important role in the regulation of neurogenesis. However, little is known about mGluR5 in the prenatal human brain. Here, we aimed to explore the expression pattern and cellular distribution of mGluR5 in human fetal hippocampus. Methods Thirty-four human fetuses were divided into four groups according to gestational age: 9-11, 14-16, 22-24 and 32-36 weeks. The hippocampus was dissected out and prepared. The protein and mRNA expression of mGluR5 were evaluated by Western blot and immunohistochemistry or real-time PCR. The cellular distribution of mGluR5 was observed with double-labeling immunofluorescence. Results Both mGluR5 mRNA and protein were detected in the prenatal human hippocampus by real-time PCR and immunoblotting, and the expression levels increased gradually over time. The immunohistochemistry results were consistent with immunoblotting and showed that mGluR5 immunoreactivity was mainly present in the inner marginal zone (IMZ), hippocampal plate (HP) and ventricular zone (VZ). The double-labeling immunoftuorescence showed that mGluR5 was present in neural stem cells (nestin-positive), neuroblasts (DCX-positive) and mature neurons (NeuN-positive), but not in typical astrocytes (GFAP- positive). The cells co-expressing mGluR5 and nestin were mainly located in the IMZ, HP and subplate at 11 weeks, all layers at 16 weeks, and CA 1 at 24 weeks. As development proceeded, the number of mGluR5/nestin double-positive cells decreased gradually so that there were only a handful of double-labeled cells at 32 weeks. However, mGluR5/DCX double-positive cells were only found in the HP, IZ and IMZ at 11 weeks. Conclusion The pattern ofmGluR5 expression by neural stern/progenitor cells, neuroblasts and neurons provides important anatomical evidence for the role of mGluR5 in the regulation of human hippocampal development.
文摘Objective: To examine the changes in the express ion of mGluR4 after diffuse brain injury (DBI) and to determine the role of its specific agonist L-2-amino-4-phosphonobutyrate (L-AP4) in vivo. Methods: A total of 161 male SD rats were randomized into the f ollowing groups. Group A included normal control,sham-operated control and DBI group. DBI was produced according to Marmarous diffuse head injury model. mRN A expression of mGluR4 was detected by hybridization in situ. Group B included D BI alone,DBI treated with normal saline and DBI treated with L-AP4. All DBI ra ts were trained in a series of performance tests,following which they were subj ected to DBI. At 1 and 12 hours,animals were injected intraventricularly with L -AP4 ( 100 mmol/L ,10 μl) or normal saline. Motor and cognitive performance s were tested at 1,3,7,14 days after injury and the damaged neurons were also detected. Results: There was no significant difference between normal con trol group and sham-operated group in the expression of mGluR4 ( P > 0.05 ) . The animals exposed to DBI showed significantly increased expression of mRNA o f mGluR4 compared with the sham-operated animals 1 h after injury ( P < 0.05 ). At 6 hours,the evolution of neuronal expression of mGluR4 in the trauma al one group was relatively static. Compared with saline-treated control animals,rats treated with L-AP4 showed an effective result of decreased number of damag ed neurons and better motor and cognitive performances.Conclusions: Increased expression of mGluR4 is important in the pathophysiological process of DBI and its specific agonist L-AP4 can provide r emarkable neuroprotection against DBI not only at the histopathological level bu t also in the motor and cognitive performance.
基金Project (No. 29725205) supported by the National Natural Science FoundatiOn of China
文摘The synthetic studies for some known modulators of metabotropic glutamate receptors (mGluRs) such as (S)-αM4CPG, (1S,3R)-ACPD, L-CCG-I are described. Based on the structure of αM4CPG several new conformationally constrained analogues are design ed and synthesized. Among them APICA is a selective antagonist for group II mGluRs. Also, a new benzolactam-V8 analogue is found to have better isoform-selectivity for protein kine C family. Three different protocols for synthesizing benzolactam-VS analogues are developed to meet the requirement for delivering more analogues to test.
基金supported by the National Natural Science Foundation of China (U2004134)Zhengzhou University (140/32310295) to NWH+2 种基金by Science Foundation Ireland(19/FFP/6437 and 14/IA/2571) to MJRa scholarship granted by the China Scholarship Council (CSC20200704504 7) to YY
文摘Cognitive decline in Alzheimer’s disease correlates with the extent of tau pathology,in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus.Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-βor long-term depression,a form of synaptic weakening involved in learning and memory,share similar mechanisms.Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging.Conversely,certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau,in particular,phosphorylation at residue Ser396.Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau(hyper)phosphorylation.We first summarize experimental evidence regarding tau-long-term depression interactions,followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer’s disease.Finally,we conclude with some thoughts and perspectives on future research about these interactions.
文摘Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the translation of its binding RNA, thus regulate several signaling pathways. Many FXS patients show high susceptibility to epilepsy. Epilepsy is a chronic neurological disorder which is characterized by the recurrent appearance of spontaneous seizures due to neuronal hyperactivity in the brain. Both the abnormal activation of several signaling pathway and morphological abnormality that are caused by the loss of FMRP can lead to a high susceptibility to epilepsy. Combining with the research progresses on both FXS and epilepsy, we outlined the possible mechanisms of high susceptibility to epilepsy in FXS and tried to give a prospect on the future research on the mechanism of epilepsy that happened in other mental retardations.
基金the laboratory of Maria Kukley was supported by the Excellence Strategy Program of the University of Tübingen(Deutsche Forschungsgemeinschaft,ZUK63)
文摘In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwann cells that are ideally placed to respond to,and possibly shape,axonal activity.The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells,as well as signalling via diffusible substances.Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves.Two types of experimental findings support this idea:first,glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves;second,axons and Schwann cells in the peripheral nerves express glutamate receptors.Yet,the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing.Remarkably,in the central nervous system,axons and myelinating glia are involved in glutamatergic signalling.This signalling occurs via different mechanisms,the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells.Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation,migration,and differentiation of oligodendrocyte precursor cells,survival of oligodendrocytes,and re-myelination of axons after damage.Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves?What is the functional role of glutamate receptors in the peripheral nerves?Is activation of glutamate receptors in the nerves beneficial or harmful during diseases?In this review,we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves.We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.
基金the Scientific and Technological Research Project of Jiangxi Provincial Public Health Bureau,No.20071090
文摘BACKGROUND: Injection of glutamate (Glu) in normal animals can cause neuronal c-Fos expression; however, whether Glu can induce spinal neuronal c-Fos expression in pain models is unclear. OBJECTIVE: To examine the effects of intraplantar and intrathecal injection of Glu on c-Fos expression in the L5 spinal cord dorsal horn Ⅰ/Ⅱ and Ⅲ/Ⅳ layers after spinal nerve ligation, and to study the effects of the N-methyI-D-aspartic acid (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoate (D-AP5), and a selective group I mGluR antagonist, 7-hydroyiminocyclo propan[a]chromen-lacarboxylic acid ethyl ester (cpccoEt). DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Pharmacology, Oral Anatomy, and Neurobiology, Osaka University Graduate School of Dentistry, from December 2005 to December 2006. MATERIALS: Glu (5 μmol), D-AP5 (50 nmot) and cpccoEt (250 nmol) were provided by Wako Pure Chemical Industries, Osaka, Japan, and diluted in saline (50 μL). The pH of all solutions was adjusted to 7.4. METHODS: Twelve rats were randomly divided into sham operation (n = 6) and spinal nerve ligation (SNL; n = 6) groups for behavioral assessments of neuropathic pain after ligation surgery of the left L5-6 nerve segment. Another 60 rats were randomly divided into sham operation, SNL, saline-intraplantar, saline-intrathecal, Glu-intraplantar, Glu-intrathecal, D-AP5-intrathecal, Glu-D-AP5-intrathecal, cpccoEt-intrathecal, and Glu-cpccoEt-intrathecal groups, with 6 rats in each group. All groups except sham operation group received a similar SNL. On day 14, rats received a 50-μL injection of saline, Glu, D-AP5, and/or cpccoEt into the left intraplantar or intrathecal L5-4 segments. MAIN OUTCOME MEASURES: The number of c-Fos positive neurons in both Ⅰ/Ⅱ and Ⅲ/Ⅳ spinal layers at L6 was observed using immunohistochemistry 2 hours after administration. RESULTS: (1) SNL increased the level of c-Fos expression in two sides of the spinal cord, particularly on Ⅲ/Ⅳ spinal layers of the ligated side. (2) Intraplantar or intrathecal administration of saline significantly increased the c-Fos labeled neurons in Ⅰ/Ⅱ spinal layers of the ligated side, compared with SNL alone (P 〈 0.01). (3) Intraplantar Glu (5 μmol) increased the number of c-Fos positive neurons in Ⅰ/Ⅱ spinal layers compared with intraplantar saline (P〈 0.01). (4) The number of c-Fos neurons in Ⅰ/Ⅱ spinal layers on both the ipsilateral and contralateral side after intraplantar Glu was lower than intrathecal Glu (P〈 0.01), with a 3-fold higher induction by intrathecal Glu. (5) Co-administration of D-AP5 or cpccoEt reduced the effects of intrathecal Glu (P 〈 0.01). CONCLUSION: Intrathecal Glu increases c-Fos expression more than intraplantar Glu. Antagonists of NMDA and group I mGluRs block this effect.
基金Supported by grants from the Ministerio de Ciencia y Tecnología, No. SAF2002-00851 and SAF2005-06089 and from Ministerio de Sanidad, No. Red G03-155 and PI050253 of Spain and by grants from Consellería de Empresa, Universidad y Ciencia, and de Sanidad, Generalitat Valenciana, No. Grupos03/001, GV04B-055, GV04B-012, GVS05/082 and ACOMP06/005 and AP-005/06
文摘Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE.
基金Supported by Canadian Institutes of Health Research Grant,No.TGS-1092194-Year Fellowship from the University of British Columbia.
文摘Insufficient sleep has been correlated to many physiological and psychoneurological disorders.Over the years,our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes.In addition,during sleep,electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system(CNS).Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour.Memory consolidation and learning that take place during sleep cycles,can be affected by changes in synaptic plasticity during sleep disturbances.G-protein coupled receptors(GPCRs),with their versatile structural and functional attributes,can regulate synaptic plasticity in CNS and hence,may be potentially affected in sleep deprived conditions.In this review,we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions.