期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition 被引量:1
1
作者 任鹏 韩刚 +6 位作者 付丙磊 薛斌 张宁 刘喆 赵丽霞 王军喜 李晋闽 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期145-149,共5页
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit... CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature. 展开更多
关键词 of or IS as RATE GAN Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with metal organic chemical vapor deposition by with
下载PDF
In-situ wafer bowing measurements of GaN grown on Si(111) substrate by reflectivity mapping in metal organic chemical vapor deposition system 被引量:1
2
作者 杨亿斌 柳铭岗 +12 位作者 陈伟杰 韩小标 陈杰 林秀其 林佳利 罗慧 廖强 臧文杰 陈崟松 邱运灵 吴志盛 刘扬 张佰君 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期362-366,共5页
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r... In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. 展开更多
关键词 stresses metal organic chemical vapor deposition wafer bowing in-situ reflectivity mapping
下载PDF
Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition 被引量:1
3
作者 黎明 王勇 +1 位作者 王凯明 刘纪美 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期597-601,共5页
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ... High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated. 展开更多
关键词 AlGaN/GaN HEMTs low-leakage current metal organic chemical vapor deposition Mg-dopedbuffer layer
下载PDF
GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency
4
作者 张杨 王青 +5 位作者 张小宾 刘振奇 陈丙振 黄珊珊 彭娜 王智勇 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期167-171,共5页
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the... We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum. 展开更多
关键词 by on it of GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by metal organic chemical vapor deposition with High Efficiency is THAN Ge GaAs with cell that
下载PDF
Improved Semipolar(11(2|-)2) GaN Quality Grown on m-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN_x Interlayer
5
作者 许晟瑞 赵颖 +3 位作者 姜腾 张进成 李培咸 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期150-152,共3页
The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-r... The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN. 展开更多
关键词 GaN Quality Grown on m-Plane Sapphire Substrates by metal organic chemical vapor deposition Using Self-Organized SiN_x Interlaye in of is by Improved Semipolar on
下载PDF
Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition
6
作者 全汝岱 张进成 +3 位作者 张雅超 张苇航 任泽阳 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期145-148,共4页
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct... Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively. 展开更多
关键词 GAN IS in of Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed metal organic chemical vapor deposition by on
下载PDF
Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
7
作者 吉泽生 汪连山 +5 位作者 赵桂娟 孟钰淋 李方政 李辉杰 杨少延 王占国 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期420-425,共6页
We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the re... We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress. 展开更多
关键词 pulsed metal organic chemical vapor deposition growth mode MORPHOLOGY crystalline quality
下载PDF
Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition
8
作者 张雅超 周小伟 +6 位作者 许晟瑞 陈大正 王之哲 汪星 张金风 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期796-801,共6页
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy... Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. 展开更多
关键词 HETEROSTRUCTURE InGaN channel pulsed metal organic chemical vapor deposition
下载PDF
Tribological behavior of N-doped ZnO thin films by metal organic chemical vapor deposition under lubricated contacts 被引量:1
9
作者 Bolutife OLOFINJANA Uchenna Sydney MBAMARA +3 位作者 Oyelayo AJAYI Cinta LORENZO-MARTIN Eusebius Ikechukwu OBIAJUUWA Ezekiel Oladele Bolarinwa AJAYI 《Friction》 CSCD 2017年第4期402-413,共12页
N-doped ZnO thin films were deposited on 304L stainless steel through the pyrolysis of zinc acetate and ammonium acetate in different ratios at a temperature of 420 ℃ using metal organic chemical vapor deposition.Com... N-doped ZnO thin films were deposited on 304L stainless steel through the pyrolysis of zinc acetate and ammonium acetate in different ratios at a temperature of 420 ℃ using metal organic chemical vapor deposition.Compositional and structural analyzes of the films were performed by using Rutherford backscattering spectroscopy and X-ray diffraction.The frictional behavior of the thin films and 304L stainless steel substrate was evaluated using a ball-on-flat configuration with reciprocating sliding under marginally lubricated and fully flooded conditions.Al alloy (2017) was used as ball counterface,while basestock synthetic polyalfaolefin oil (PAO10) without additives was used as lubricant.The flat and ball counterface surfaces were examined to assess the wear dimension and failure mechanism.Under marginally lubricated condition,N-doped ZnO thin films provided significant reduction in friction,whereas the films have minimal or no effect in friction under fully flooded condition.N-doped ZnO thin films showed a significant effect in protecting the ball counterface as wear volume was reduced compared with that of the substrate under the marginally lubricated condition.Under the fully flooded condition,with the exception of one of the films,the wear volume of the N-doped ZnO thin films ball reduced compared with that of the substrate.In all the ball counterfaces for N-doped ZnO thin films under both conditions,wear occurred through abrasive mechanism of various degrees or mild polishing.Thus,superfluous lubrication of N-doped ZnO thin films is not necessary to reduce friction and wear. 展开更多
关键词 ZnO film metal organic chemical vapor deposition FRICTION WEAR optical microscopy
原文传递
The multiscale simulation of metal organic chemical vapor deposition growth dynamics of GaInP thin film
10
作者 HU GuiHua YU Tao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第8期1481-1490,共10页
As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin... As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth. 展开更多
关键词 metal organic chemical vapor deposition computational fluid dynamics kinetic Monte Carlo virtual reality multiscale simulation GaInP thin film growth
原文传递
Growth of N-polar GaN on vicinal sapphire substrate by metal organic chemical vapor deposition
11
作者 Can-Tao Zhong Guo-Yi Zhang 《Rare Metals》 SCIE EI CAS CSCD 2014年第6期709-713,共5页
The growth and properties of N-polar Ga N layers by metal organic chemical vapor deposition(MOCVD) were reported. It is found that N-polar Ga N grown on normal sapphire substrate shows hexagonal hillock surface morp... The growth and properties of N-polar Ga N layers by metal organic chemical vapor deposition(MOCVD) were reported. It is found that N-polar Ga N grown on normal sapphire substrate shows hexagonal hillock surface morphology. With the misorientation angles increasing from 0.5° to 2.0° toward the a-plane of the sapphire substrate, the number of the hillock becomes less and less and finally the surface becomes flat one on the sapphire substrate with the misorientation angle of 2°. It is also found that the crystalline quality and the strain in the Ga N are greatly influenced by the misorientation angle. 展开更多
关键词 GAN N-polarity metal organic chemical vapor deposition
原文传递
High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal–organic chemical vapor deposition
12
作者 王连锴 刘仁俊 +4 位作者 吕游 杨皓宇 李国兴 张源涛 张宝林 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期114-118,共5页
Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and mic... Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices. 展开更多
关键词 crystal growth metalorganic chemical vapor deposition thin films
下载PDF
Characterization of Zn-doped GaN grown by metal–organic vapor phase epitaxy
13
作者 Cui-Ting Wu Yue Zhou +3 位作者 Qiao-Yun Sun Lu-Qiu Huang Ai-Lan Li Zhi-Ming Li 《Rare Metals》 SCIE EI CAS CSCD 2020年第11期1328-1332,共5页
The point defects and photoluminescence(PL)spectra of gallium nitride(GaN)epilayers with Mg,Zn,and unintentional doping were investigated in this study.The concentration of point defects(Ga vacancy and its related com... The point defects and photoluminescence(PL)spectra of gallium nitride(GaN)epilayers with Mg,Zn,and unintentional doping were investigated in this study.The concentration of point defects(Ga vacancy and its related complexes)in the Zn-doped GaN is consistent with that in the Mg-doped GaN,but lower than that in undoped GaN.It is suggested that Zn(Mg)atoms occupy Ga sites and suppress the formation of Ga vacancies.Comparing the blue luminescence(BL)band intensity of GaN:Zn with that of GaN:Mg,a factor of 10 strong PL intensity demonstrates that a moderate incorporation of Zn to GaN is likely to improve the structural quality of GaN.Detailed studies on 2.93 eV BL band for GaN:Zn reveal that the Zn related BL band behaves as a donor-acceptor pairs character.For the acceptor level,isolated Zn_(Ga)with the activation energy of 0.386 eV above the valence band is obtained from temperature-dependent PL measurements,whereas the deep donor defect responsible for the 2.93 eV band is deduced to be 164 meV below the conduction band.An O_(N)-H complex model is suggested to explain the deep donor origin. 展开更多
关键词 GaN metalorganic chemical vapor deposition Zn-doped PHOTOLUMINESCENCE Donor–acceptor pairs
原文传递
Analysis and design of resistance-wire heater in MOCVD reactor 被引量:1
14
作者 曲毓萱 王斌 +5 位作者 胡仕刚 吴笑峰 李志明 唐志军 李劲 胡莹璐 《Journal of Central South University》 SCIE EI CAS 2014年第9期3518-3524,共7页
Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heati... Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position. 展开更多
关键词 metal organic chemical vapor deposition (MOCVD) reactor design thermal analysis filament heating
下载PDF
Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template 被引量:1
15
作者 李俊泽 陶岳彬 +6 位作者 陈志忠 姜显哲 付星星 姜爽 焦倩倩 于彤军 张国义 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期301-306,共6页
The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-pha... The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-phase epitaxial(HVPE), and laser lift-off(LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction(XRD), high resolution transmission electron microscope(HRTEM), Rutherford back-scattering(RBS), photoluminescence, current-voltage and light output-current measurements. The width of(0002) reflection in XRD rocking curve, which reaches 173 for the thick GaN template LED, is less than that for the conventional one, which reaches 258. The HRTEM images show that the multiple quantum wells(MQWs) in 80-μmthick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation. 展开更多
关键词 HOMOEPITAXY strain relaxation metal organic chemical vapor deposition(MOCVD) hydride vapor-phase epitaxy(HVPE)
下载PDF
Quantum cascade lasers grown by MOCVD
16
作者 Yongqiang Sun Guangzhou Cui +10 位作者 Kai Guo Jinchuan Zhang Ning Zhuo Lijun Wang Shuman Liu Zhiwei Jia Teng Fei Kun Li Junqi Liu Fengqi Liu Shenqiang Zhai 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期47-63,共17页
Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,... Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,medical diagnosis,and defense applications.Metalorganic chemical vapor deposition(MOCVD)is an important technology for growing high quality semiconductor materials,and has achieved great success in the semiconductor industry due to its advantages of high efficiency,short maintenance cycles,and high stability and repeatability.The utilization of MOCVD for the growth of QCL materials holds a significant meaning for promoting the large batch production and industrial application of QCL devices.This review summarizes the recent progress of QCLs grown by MOCVD.Material quality and the structure design together determine the device performance.Research progress on the performance improvement of MOCVD-grown QCLs based on the optimization of material quality and active region structure are mainly reviewed. 展开更多
关键词 quantum cascade lasers continuous wave high optical power metal organic chemical vapor deposition broad gain
下载PDF
Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells
17
作者 陈鑫 赵璧君 +7 位作者 任志伟 童金辉 王幸福 卓祥景 章俊 李丹伟 易翰翔 李述体 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期574-577,共4页
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in whi... InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented. 展开更多
关键词 metal organic chemical vapor deposition (MOCVD) GaN based solar cells stepped-thickness quantum wells
下载PDF
Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
18
作者 郭静姝 祝杰杰 +9 位作者 刘思雨 刘捷龙 徐佳豪 陈伟伟 周雨威 赵旭 宓珉瀚 杨眉 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期467-471,共5页
This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting ... This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization. 展开更多
关键词 InAlN/GaN low-resistance ohmic contacts metalorganic chemical vapor deposition(MOCVD) n^(+)-InGaN time of flight secondary ion mass spectrometry(TOF-SIMS)
下载PDF
ALD growth of ultra-thin Co layers on the topological insulator Sb2Te3 被引量:2
19
作者 Emanuele Longo Roberto Mantovan +8 位作者 Raimondo Cecchini Michael D.Overbeek Massimo Longo Giovanna Trevisi Laura Lazzarini Graziella Tallarida Marco Fanciulli Charles H.Winter Claudia Wiemer 《Nano Research》 SCIE EI CAS CSCD 2020年第2期570-575,共6页
Taking the full advantage of the conformal growth characterizing atomic layer deposition(ALD),the possibility to grow Co thin films,with thickness from several tens down to few nanometers on top of a granular topologi... Taking the full advantage of the conformal growth characterizing atomic layer deposition(ALD),the possibility to grow Co thin films,with thickness from several tens down to few nanometers on top of a granular topological insulator(TI)Sb2Tes film,exhibiting a quite high surface roughness(2-5 nm),was demonstrated.To study the Co growth on the Sb2Tes substrate,we performed simultaneous Co depositions also on sputtered Pt substrates for comparison.We conducted a thorough chemical-structural characterization of the Co/Sb2Tes and Co/Pt heterostructures,confirming for both cases,not only an excellent conformality,but also the structural continuity of the Co layers.X-ray diffraction(XRD)and high-resolution transmission electron microscope(HRTEM)analyses evidenced that Co on Sb2Te3 grows preferentially oriented along the[0oe]direction,following the underlying rhombohedric substrate.Differently,Co crystallizes in a cubic phase oriented along the[111]direction when deposited on Pt.This work shows that,in case of deposition of crystalline materials,the ALD surface selectivity and conformality can be extended to the definition of local epitaxy,where in-plane ordering of the crystal structure and mosaicity of the developed crystallized grains are dictated by the underlying substrate.Moreover,a highly sharp and chemically-pure Co/Sb2Tes interface was evidenced,which is promising for the application of this growth process for spintronics. 展开更多
关键词 atomic layer deposition X-ray diffraction Co-fcc Co-hep antimony telluride metal organic chemical vapor deposition SPINTRONICS
原文传递
Nonpolar Al_(x)Ga_(1−x)N/Al_(y)Ga_(1−y)N multiple quantum wells on GaN nanowire for UV emission
20
作者 Sonachand Adhikari Olivier Lee Cheong Lem +5 位作者 Felipe Kremer Kaushal Vora Frank Brink Mykhaylo Lysevych Hark Hoe Tan Chennupati Jagadish 《Nano Research》 SCIE EI CSCD 2022年第8期7670-7680,共11页
Nonpolar m-plane AlGaN offers the advantage of polarization-free multiple quantum wells(MQWs)for ultraviolet(UV)emission and can be achieved on the sidewalls of selective area grown GaN nanowires.We reveal that the gr... Nonpolar m-plane AlGaN offers the advantage of polarization-free multiple quantum wells(MQWs)for ultraviolet(UV)emission and can be achieved on the sidewalls of selective area grown GaN nanowires.We reveal that the growth of AlGaN on GaN nanowires by metal organic chemical vapor deposition(MOCVD)is driven by vapor-phase diffusion,and consequently puts a limit on the pitch of nanowire array due to shadowing effect.An insight into the difficulty of achieving metal-polar AlGaN nanowire by selective area growth(SAG)in MOCVD is also provided and can be attributed to the strong tendency to form pyramidal structure due to a very small growth rate of{1011}semipolar planes compared to(0001)c-plane.The nonpolar m-plane sidewalls of GaN nanowires obtained via SAG provides an excellent platform for growth of nonpolar AlGaN MQWs.UV emission from mplane Al_(x)Ga_(1−x)N/Al_(y)Ga_(1−y)N MQWs grown on sidewalls of dislocation-free GaN nanowire is demonstrated in the wavelength range of 318–343 nm. 展开更多
关键词 metal organic chemical vapor deposition(MOCVD) NANOWIRE nonpolar plane AlGaN selective area growth multiple quantum wells
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部