期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Liquid crystal-integrated metasurfaces for an active photonic platform 被引量:2
1
作者 Dohyun Kang Hyeonsu Heo +4 位作者 Younghwan Yang Junhwa Seong Hongyoon Kim Joohoon Kim Junsuk Rho 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第6期5-29,共25页
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall... Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices. 展开更多
关键词 tunable metasurface liquid crystal active metasurface electrically tunable optical system
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:4
2
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces 被引量:2
3
作者 Tong Nan Huan Zhao +3 位作者 Jinying Guo Xinke Wang Hao Tian Yan Zhang 《Opto-Electronic Science》 2024年第5期1-11,共11页
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec... Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging. 展开更多
关键词 structured light beam tri-layer metallic metasurface longitudinal polarization non-axial transmission
下载PDF
Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters 被引量:1
4
作者 Yinan Zhang Yinggang Chen +2 位作者 Tong Wang Qian Zhu Min Gu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第4期17-25,共9页
Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the... Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change. 展开更多
关键词 radiative cooling dielectric metasurfaces machine learning thermal emitters
下载PDF
Resonantly enhanced second-and third-harmonic generation in dielectric nonlinear metasurfaces 被引量:1
5
作者 Ji Tong Wang Pavel Tonkaev +5 位作者 Kirill Koshelev Fangxing Lai Sergey Kruk Qinghai Song Yuri Kivshar Nicolae C.Panoiu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期5-19,共15页
Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm... Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices. 展开更多
关键词 second-harmonic generation third-harmonic generation bound state in the continuum guided mode resonance all-dielectric metasurfaces nonlinear optics
下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
6
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
下载PDF
A Single-Sized Metasurface for Image Steganography and Multi-Key Information Encryption
7
作者 Congling Liang Tian Huang +2 位作者 Qi Dai Zile Li Shaohua Yu 《Engineering》 SCIE EI CAS CSCD 2024年第10期61-70,共10页
With the escalating flow of information and digital communication,information security has become an increasingly important issue.Traditional cryptographic methods are being threatened by advancing progress in computi... With the escalating flow of information and digital communication,information security has become an increasingly important issue.Traditional cryptographic methods are being threatened by advancing progress in computing,while physical encryption methods are favored as a viable and compelling avenue.Metasurfaces,which are known for their extraordinary ability to manipulate optical parameters at the nanoscale,exhibit significant potential for the revolution of optical devices,making them a highly promising candidate for optical encryption applications.Here,a single-sized metasurface with four independent channels is proposed for conducting steganography and multi-key information encryption.More specifically,plaintext is transformed into a ciphertext image,which is encoded into a metasurface,while the decryption key is discretely integrated into another channel within the same metasurface.Two different keys for steganographic image unveiling are also encoded into the metasurface and can be retrieved with different channels and spatial positions.This distributed multi-key encryption approach can enhance security,while strategically distributing images across distinct spatial zones serves as an additional measure to reduce the risk of information leakage.This minimalist designed metasurface,with its advantages of high information density and robust security,holds promise across applications including portable encryption,high-camouflaged image display,and high-density optical storage. 展开更多
关键词 metasurface MULTI-CHANNEL STEGANOGRAPHY ENCRYPTION
下载PDF
Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
8
作者 Ya-Jie Zhang Chao-Long Li +3 位作者 Jia-Qi Luan Ming Zhao Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期287-294,共8页
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m... Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields. 展开更多
关键词 metasurface polarization conversion topology optimization ULTRA-BROADBAND
下载PDF
A 1-bit electronically reconfigurable beam steerable metasurface reflectarray with multiple polarization manipulations
9
作者 史琰 徐茜雅 +2 位作者 王少泽 魏文岳 武全伟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期384-394,共11页
A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the ... A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities. 展开更多
关键词 electronically controlled metasurface reflectarray beam steering polarization manipulation
下载PDF
Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
10
作者 Sören im Sande Yadong Deng +1 位作者 Sergey I.Bozhevolnyi Fei Ding 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第8期16-24,共9页
Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of hig... Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of highly integrated multifunctional optical devices.In this work,we introduce a reflective metasurface for the generation of a complete(angularly resolved)polarization set by randomly interleaving anisotropic plasmonic meta-atoms acting as nanoscale wave plates.In the proof-of-concept demonstration,we achieve multidirectional beam-steering into different polarization channels forming a complete set of polarization states,which can also be dynamically altered by switching the spin of incident light.The developed design concept represents a significant advancement in achieving flat polarization optics with advanced functionalities. 展开更多
关键词 plasmonic metasurface randomly interleaved multidirectional beam-steering spin-controlled all-polarization generation
下载PDF
Focus control of wide-angle metalens based on digitally encoded metasurface
11
作者 Yi Chen Simeng Zhang +7 位作者 Ying Tian Chenxia Li Wenlong Huang Yixin Liu Yongxing Jin Bo Fang Zhi Hong Xufeng Jing 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第8期26-41,共16页
Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in... Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in two-dimensional space. This metalens achieves focus shift in the x-direction by changing the oblique incidence angle of the incident wave,and focus control in the y-direction by combining with the convolution principle of the digitally coded metasurface to achieve flexible control of light focusing in the two-dimensional plane. The metasurface unit is mainly composed of threelayer of metal structure and two layers of medium, and the transmission phase is obtained by changing the middle layer of metal structure, which in turn obtains the required phase distribution of the metalens. The design of the metalens realizes the function of the lens with a large viewing angle at the x-polarized incidence, and realizes two-dimensional focus control. Experimentally, we prepared the designed coding metalens and tested the focus control function of the wide-angle coding metalens. The experimental results are in good agreement with the design results. 展开更多
关键词 metasurface metalens WIDE-ANGLE CODING
下载PDF
Complete-basis-reprogrammable coding metasurface for generating dynamicallycontrolled holograms under arbitrary polarization states
12
作者 Zuntian Chu Xinqi Cai +7 位作者 Ruichao Zhu Tonghao Liu Huiting Sun Tiefu Li Yuxiang Jia Yajuan Han Shaobo Qu Jiafu Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第9期65-80,共16页
Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from res... Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction. 展开更多
关键词 basis vector control reprogrammable metasurface dynamically-controlled holograms arbitrary polarization state broadband
下载PDF
Wideband radar cross-section reduction by a double-layer-plasma-based metasurface
13
作者 赵智明 李小平 +2 位作者 董果香 刘旭 牟相超 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期159-168,共10页
Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction... Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique. 展开更多
关键词 stealth technology radar cross-section(RCS)reduction backscattering cancellation double-layer-plasma-based metasurface
下载PDF
Experimental realization of fractal fretwork metasurface for sound anomalous modulation
14
作者 何佳杰 于书萌 +1 位作者 江雪 他得安 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期473-478,共6页
Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the ... Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption. 展开更多
关键词 acoustic metasurface fractal geometry sound anomalous modulation
下载PDF
Wideband low-scattering metasurface with an in-band reconfigurable transparent window
15
作者 朱瑛 杨维旭 +4 位作者 段坤 姜田 赵俊明 陈克 冯一军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期334-341,共8页
Active metasurfaces with dynamically reconfigurable functionalities are highly demanded in various practical applications.Here,we propose a wideband low-scattering metasurface that can realize an in-band reconfigurabl... Active metasurfaces with dynamically reconfigurable functionalities are highly demanded in various practical applications.Here,we propose a wideband low-scattering metasurface that can realize an in-band reconfigurable transparent window by altering the operation states of the PIN diodes loaded on the structures.The metasurface is composed of a band-pass frequency selective surface(FSS)sandwiched between two polarization conversion metasurfaces(PCMs).PIN diodes are integrated into the FSS to switch the transparent window,while a checkerboard configuration is applied in PCMs for the diffusive-reflective function.A sample with 20×20 elements is designed,fabricated,and experimentally verified.Both simulated and measured results show that the in-band functions can be dynamically switched between beam-splitting scattering and high transmission by controlling the biasing states of the diodes,while low backscattering can be attained outside the passband.Furthermore,the resonant structures of FSS also play the role of feeding lines,thus significantly eliminating extra interference compared with conventional feeding networks.We envision that the proposed metasurface may provide new possibilities for the development of an intelligent stealth platform and its antenna applications. 展开更多
关键词 metasurface reconfigurable transparent window radar cross section(RCS)reduction
下载PDF
A Multifunctional Chiral Metasurface with Asymmetric Transmission and Linear-Polarization Conversion
16
作者 AFZAL Ahmed CAO Qunsheng MUHAMMAD Sajjad 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期21-26,共6页
In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two hole... In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two holes in the lower side of the unit cell.In the frequency band from 8.3 GHz to 10.4 GHz,AT is realized with more than 90%efficiency and the same chiral metasurface transforms linear polarized wave into its orthogonal counterpart with high efficiency.For LPC,the polarization conversion ratio(PCR)is greater than 95%.The proposed metasurface is stable against the incident angles of striking electromagnetic(EM)waves up to 60°for both operations of AT and LPC. 展开更多
关键词 chiral metasurface polarization conversion asymmetric tranmission plasmon resonances
下载PDF
Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
17
作者 薛天 李宇博 +5 位作者 宋浩元 王相光 张强 付淑芳 周胜 王选章 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期428-435,共8页
We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons... We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons(SPPPs), which are coupled by the surface phonon polaritons(SPh Ps) and surface plasmon polaritons(SPPs), can greatly increase GH shifts.Based on the in-plane anisotropy of BP, two typical metasurface models are designed and investigated. An enormous GH shift of about-7565.58 λ_(0) is achieved by adjusting the physical parameters of the BP-patches. In the designed metasurface structure, the maximum sensitivity accompanying large GH shifts can reach about 6.43 × 10^(8) λ_(0)/RIU, which is extremely sensitive to the size, carrier density, and layer number of BP. Compared with a traditional surface plasmon resonance sensor, the sensitivity is increased by at least two orders of magnitude. We believe that investigating metasurface-based SPPPs sensors could lead to high-sensitivity biochemical detection applications. 展开更多
关键词 Goos–H?nchen shift black phosphorus surface plasmon phonon polaritons sensitivity metasurfaces
下载PDF
Design of a Metasurface Antenna Based on Characteristic Mode Theory
18
作者 HE Huan 《电讯技术》 北大核心 2024年第10期1561-1568,共8页
A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutua... A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems. 展开更多
关键词 metasurface antenna characteristic mode theory dipole antenna realized gain
下载PDF
Multifunctional polarization converter based on multilayer reconfigurable metasurface 被引量:1
19
作者 Ping Wang Yong Zhang +2 位作者 Yu Wang Hong-cheng Zhou Zhong-ming Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期136-145,共10页
In the modern wireless communication system,the manipulation for polarization of electromagnetic wave plays a important role in improving the capacity and reliability of communication.In this paper,a multifunctional p... In the modern wireless communication system,the manipulation for polarization of electromagnetic wave plays a important role in improving the capacity and reliability of communication.In this paper,a multifunctional polarization converter(MFPC)based on the multilayer reconfigurable metasurface is proposed,which can assist the source antenna to transmit and receive multiple polarization signals.The MFPC consists of a grating which can filter out the undesired polarization and four layers of metasurfaces incorporated with PIN diodes.The functions of the MFPC include LTC and LTL polarization conversions,co-polarization transmission and reflection for arbitrary polarization.By changing the states of PIN diodes,the functions of MFPC can be dynamically switched.Loaded on the aperture of source antenna,the proposed MFPC can serve as a transmissive array with multiple polarization channels,and can also provide EM protection for source antenna by reflecting the incoming interference waves.Cascading of the metasurfaces produces Fabry-Perot resonance in the MFPC,and it contributes to the realization of LTC and LTL polarization conversions.To verify the performance of the proposed MFPC,the prototype is fabricated and tested.The measured results show that the fractional bandwidths of four functions are all higher than 31.9% with transmission or reflection coefficients higher than-2 d B.The frequency band of each function is mainly concentrated in S-band.The measured data are in agreement with the simulated results. 展开更多
关键词 Multifunctional polarization converter Multilayer metasurface Electrical reconfigurable metasurface Wide operational band
下载PDF
Time-sequential color code division multiplexing holographic display with metasurface 被引量:14
20
作者 Xin Li Qinmiao Chen +4 位作者 Xue Zhang Ruizhe Zhao Shumin Xiao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第8期8-16,共9页
Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface ho... Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface holography can only realize static manipulation.In this study,we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing(CDM)to realize dynamic manipulation.Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anticracks.A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density,and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation.Our approach demonstrates significant application potential in optical data storage,optical encryption,multiwavelengthversatile diffractive optical elements,and stimulated emission depletion microscopy. 展开更多
关键词 metasurface color holography dynamic display code division multiplexing
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部