Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 were prepared by the hydrothermal technique with alkali-treated H-ZSM-5zeolite as the source and characterized by scanning electron microscopy,transmission el...Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 were prepared by the hydrothermal technique with alkali-treated H-ZSM-5zeolite as the source and characterized by scanning electron microscopy,transmission electron microscopy,energy dispersive spectroscopy,X-ray diffraction,N2 adsorption-desorption measurement and NH3 temperature-programmed desorption.The catalytic performances for the methanol dehydration to dimethyl ether over H-ZSM-5/MCM-41 were evaluated.Among these catalysts,H-ZSM-5/MCM-41 prepared with NaOH dosage (nNa/nSi) varying from 0.4 to 0.47 presented excellent catalytic activity with more than 80%methanol conversion and 100%dimethyl ether selectivity in a wide temperature range of 170—300℃,and H-ZSM-5/MCM-41 prepared with nNa/nSi=0.47 showed constant methanol conversion of about 88.7%,100% dimethyl ether selectivity and excellent lifetime at 220℃.The excellent catalytic performances were due to the highly active and uniform acidic sites and the hierarchical porosity in the micro-mesoporous composite molecular sieves.The catalytic mechanism of H-ZSM-5/MCM-41 for the methanol dehydration to dimethyl ether process was also discussed.展开更多
A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrime...A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrimethyl ammonium bromide (CTAB) as templates (samples C and D, respectively). Textural and acidic properties of γ-alumina samples are characterized by XRD, N2 adsorption-desorption and NH3-TPD techniques. Vapor-phase dehydration of methanol into dimethyl ether is carried out over these samples. Among them, sample C shows the highest catalytic activity. NH3-TPD analysis reveals that the sample with smaller crystallite size possesses higher concentration of medium acidic sites and consequently higher catalytic activity. Thermal decomposition method leads to decrease in both surface area and moderate acidity, therefore it is the cause of lower catalytic activity.展开更多
The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether...The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether in a fixed-bed reactor under the same operating conditions (T = 300 ?C, P = 1 bar, LHSV = 2.8, 11.7, 26.1 h?1) and characterized by means of N2 adsorption-desorption, NH3-TPD, XRD, TGA and SEM techniques. According to the experimental results, the catalysts prepared using sol-gel method in non-aqueous medium showed better performance compared with those prepared by other methods.展开更多
In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim o...In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component.展开更多
H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalyti...H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied. The catalysts were characterized by N2 adsorption-desorption, XRD, NH3-TPD, TGA/DTA, and SEM techniques. The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined. Analysis of variance showed that two variables and their interaction significantly affected the response. According to the experimental results, the optimized catalyst prepared at 170℃ with the Si/A1 molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.展开更多
Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copp...Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.展开更多
基金supported by the National Nature Science Foundation of China (No: 20976013)International Science & Technology Cooperation Program of China (No: 2012DFR40240)
文摘Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 were prepared by the hydrothermal technique with alkali-treated H-ZSM-5zeolite as the source and characterized by scanning electron microscopy,transmission electron microscopy,energy dispersive spectroscopy,X-ray diffraction,N2 adsorption-desorption measurement and NH3 temperature-programmed desorption.The catalytic performances for the methanol dehydration to dimethyl ether over H-ZSM-5/MCM-41 were evaluated.Among these catalysts,H-ZSM-5/MCM-41 prepared with NaOH dosage (nNa/nSi) varying from 0.4 to 0.47 presented excellent catalytic activity with more than 80%methanol conversion and 100%dimethyl ether selectivity in a wide temperature range of 170—300℃,and H-ZSM-5/MCM-41 prepared with nNa/nSi=0.47 showed constant methanol conversion of about 88.7%,100% dimethyl ether selectivity and excellent lifetime at 220℃.The excellent catalytic performances were due to the highly active and uniform acidic sites and the hierarchical porosity in the micro-mesoporous composite molecular sieves.The catalytic mechanism of H-ZSM-5/MCM-41 for the methanol dehydration to dimethyl ether process was also discussed.
基金supported by the Petrochemical Research & Technology Company of National Petrochemical Company in Iran
文摘A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrimethyl ammonium bromide (CTAB) as templates (samples C and D, respectively). Textural and acidic properties of γ-alumina samples are characterized by XRD, N2 adsorption-desorption and NH3-TPD techniques. Vapor-phase dehydration of methanol into dimethyl ether is carried out over these samples. Among them, sample C shows the highest catalytic activity. NH3-TPD analysis reveals that the sample with smaller crystallite size possesses higher concentration of medium acidic sites and consequently higher catalytic activity. Thermal decomposition method leads to decrease in both surface area and moderate acidity, therefore it is the cause of lower catalytic activity.
基金supported by Iranian Nanotechnology Initiative Council
文摘The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether in a fixed-bed reactor under the same operating conditions (T = 300 ?C, P = 1 bar, LHSV = 2.8, 11.7, 26.1 h?1) and characterized by means of N2 adsorption-desorption, NH3-TPD, XRD, TGA and SEM techniques. According to the experimental results, the catalysts prepared using sol-gel method in non-aqueous medium showed better performance compared with those prepared by other methods.
文摘In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component.
文摘H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied. The catalysts were characterized by N2 adsorption-desorption, XRD, NH3-TPD, TGA/DTA, and SEM techniques. The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined. Analysis of variance showed that two variables and their interaction significantly affected the response. According to the experimental results, the optimized catalyst prepared at 170℃ with the Si/A1 molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.
文摘Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.