期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether 被引量:7
1
作者 Yu Sang Hongxiao Liu +4 位作者 Shichao He Hansheng Li Qingze Jiao Qin Wu Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期769-777,共9页
Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 were prepared by the hydrothermal technique with alkali-treated H-ZSM-5zeolite as the source and characterized by scanning electron microscopy,transmission el... Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 were prepared by the hydrothermal technique with alkali-treated H-ZSM-5zeolite as the source and characterized by scanning electron microscopy,transmission electron microscopy,energy dispersive spectroscopy,X-ray diffraction,N2 adsorption-desorption measurement and NH3 temperature-programmed desorption.The catalytic performances for the methanol dehydration to dimethyl ether over H-ZSM-5/MCM-41 were evaluated.Among these catalysts,H-ZSM-5/MCM-41 prepared with NaOH dosage (nNa/nSi) varying from 0.4 to 0.47 presented excellent catalytic activity with more than 80%methanol conversion and 100%dimethyl ether selectivity in a wide temperature range of 170—300℃,and H-ZSM-5/MCM-41 prepared with nNa/nSi=0.47 showed constant methanol conversion of about 88.7%,100% dimethyl ether selectivity and excellent lifetime at 220℃.The excellent catalytic performances were due to the highly active and uniform acidic sites and the hierarchical porosity in the micro-mesoporous composite molecular sieves.The catalytic mechanism of H-ZSM-5/MCM-41 for the methanol dehydration to dimethyl ether process was also discussed. 展开更多
关键词 hierarchical porosity H-ZSM-5 composite molecular sieve methanol dehydration dimethyl ether
下载PDF
Preparation of nanocrystalline γ-Al_2O_3 catalyst using different procedures for methanol dehydration to dimethyl ether 被引量:8
2
作者 Ahmad Reza Keshavarz Mehran Rezaei Fereydoon Yaripour 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期334-338,共5页
A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrime... A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrimethyl ammonium bromide (CTAB) as templates (samples C and D, respectively). Textural and acidic properties of γ-alumina samples are characterized by XRD, N2 adsorption-desorption and NH3-TPD techniques. Vapor-phase dehydration of methanol into dimethyl ether is carried out over these samples. Among them, sample C shows the highest catalytic activity. NH3-TPD analysis reveals that the sample with smaller crystallite size possesses higher concentration of medium acidic sites and consequently higher catalytic activity. Thermal decomposition method leads to decrease in both surface area and moderate acidity, therefore it is the cause of lower catalytic activity. 展开更多
关键词 methanol dehydration dimethyl ether gama alumina SOL-GEL
下载PDF
Synthesis of nanocrystalline γ-Al_2O_3 by sol-gel and precipitation methods for methanol dehydration to dimethyl ether 被引量:5
3
作者 Zahra Hosseini Majid Taghizadeh Fereydoon Yaripour 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期128-134,共7页
The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether... The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether in a fixed-bed reactor under the same operating conditions (T = 300 ?C, P = 1 bar, LHSV = 2.8, 11.7, 26.1 h?1) and characterized by means of N2 adsorption-desorption, NH3-TPD, XRD, TGA and SEM techniques. According to the experimental results, the catalysts prepared using sol-gel method in non-aqueous medium showed better performance compared with those prepared by other methods. 展开更多
关键词 Γ-AL2O3 SOL-GEL PRECIPITATION methanol dehydration dimethyl ether
下载PDF
The effect of FER zeolite acid sites in methanol-to-dimethyl-ether catalytic dehydration 被引量:5
4
作者 Enrico Catizzone Alfredo Aloise +1 位作者 Massimo Migliori Girolamo Giordano 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期406-415,共10页
In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim o... In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component. 展开更多
关键词 methanol dehydration Dimethyl ether Lewis acid sites FER zeolite Coke formation
下载PDF
Optimization of hydrothermal synthesis of H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether using full factorial design 被引量:3
5
作者 Samaneh Hosseini Majid Taghizadeh Ali Eliassi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期344-351,共8页
H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalyti... H-ZSM-5 zeolite was synthesized by hydrothermal method. The effects of different synthesis parameters, such as hydrothermal crystallization temperature (170-190 ℃) and Si/A1 molar ratio (100-150), on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied. The catalysts were characterized by N2 adsorption-desorption, XRD, NH3-TPD, TGA/DTA, and SEM techniques. The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined. Analysis of variance showed that two variables and their interaction significantly affected the response. According to the experimental results, the optimized catalyst prepared at 170℃ with the Si/A1 molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite. 展开更多
关键词 full factorial design H-ZSM-5 synthesis methanol dehydration dimethyl ether
下载PDF
Study on Synergy Effect in Dimethyl Ether Synthesis from Syngas 被引量:5
6
作者 王志良 刁杰 +2 位作者 王金福 金涌 X.D.PENG 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第4期412-416,共5页
Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copp... Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%. 展开更多
关键词 dimethyl ether chemical synergy methanol dehydration SYNGAS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部