Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo...Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.展开更多
The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exh...The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exhibits chaos.Strange attractors of the system are plotted to validate its chaotic behavior.Afterward,a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time.Using the latest version of the fractional Lyapunov theory,the finite time stability and robustness of the proposed scheme are proved.Finally,we present some computer simulations to illustrate the usefulness and applicability of the proposed method.展开更多
In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research gr...In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.展开更多
According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to th...According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to the inland designer compared with the current MEMS CAD software. The design flow is presented in detail, and the key techique in the platform is analyzed amply. The structure design methodology is exemplified in the design of a piezoresistive accelerometer, and the accelerometer is the optimized structure for the given performance requirements. The accelerometer is now being manufactured.展开更多
基金supported by the National Natural Science Foundation of China(No.32101153)the Fundamental Research Funds for the Central Universities(No.2021CX11018).
文摘Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.
文摘The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electromechanical resonator system(FOMEMRS).Using the maximal Lyapunov exponent criterion,we show that the FOMEMRS exhibits chaos.Strange attractors of the system are plotted to validate its chaotic behavior.Afterward,a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time.Using the latest version of the fractional Lyapunov theory,the finite time stability and robustness of the proposed scheme are proved.Finally,we present some computer simulations to illustrate the usefulness and applicability of the proposed method.
基金The project supported by the 973 Program (G1999033108)the National Natural Science Foundation of China (10125211)
文摘In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.
文摘According to the inland micro electro-mechanical system (MEMS) process technique level, a design platform of piezoresistive micro electro-mechanical accelerometer is given. This platform is much more adaptable to the inland designer compared with the current MEMS CAD software. The design flow is presented in detail, and the key techique in the platform is analyzed amply. The structure design methodology is exemplified in the design of a piezoresistive accelerometer, and the accelerometer is the optimized structure for the given performance requirements. The accelerometer is now being manufactured.