Micro/nanorobots(MNRs)capable of performing tasks at the micro-and nanoscale hold great promise for applications in cutting-edge fields such as biomedical engineering,environmental engineering,and microfabrication.To ...Micro/nanorobots(MNRs)capable of performing tasks at the micro-and nanoscale hold great promise for applications in cutting-edge fields such as biomedical engineering,environmental engineering,and microfabrication.To cope with the intricate and dynamic environments encountered in practical applications,the development of high performance MNRs is crucial.They have evolved from single-material,single-function,and simple structure to multi-material,multi-function,and complex structure.However,the design and manufacturing of high performance MNRs with complex multi-material three-dimensional structures at the micro-and nanoscale pose significant challenges that cannot be addressed by conventional serial design strategies and single-process manufacturing methods.The material-interface-structure-function/performance coupled design methods and the additive/formative/subtractive composite manufacturing methods offer the opportunity to design and manufacture MNRs with multimaterials and complex structures under multi-factor coupling,thus paving the way for the development of high performance MNRs.In this paper,we take the three core capabilities of MNRs—mobility,controllability,and load capability—as the focal point,emphasizing the coupled design methods oriented towards their function/performance and the composite manufacturing methods for their functional structures.The limitations of current investigation are also discussed,and our envisioned future directions for design and manufacture of MNRs are shared.We hope that this review will provide a framework template for the design and manufacture of high performance MNRs,serving as a roadmap for researchers interested in this area.展开更多
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and d...Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.展开更多
Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub- micrometer precision under low-strength rotating magnetic fields (〈 10 rer). Since magnetic fields with low strengths ...Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub- micrometer precision under low-strength rotating magnetic fields (〈 10 rer). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/ nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.展开更多
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to colle...Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments.Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment.The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe_(3)O_(4)nanoparticles encapsulated in a responsive hydrogel shell,and show multiple integrated functions,including energetic magnetically-driven swarming motions,bright stimuli-responsive structural colors,and photothermal conversion.Thus,they can actively navigate in complex environments utilizing their controllable swarming motions,then visualize unknown targets(e.g.,tumor lesion)by collectively mapping out local abnormal physicochemical conditions(e.g.,pH,temperature,or glucose concentra-tion)via their responsive structural colors,and further guide external light irradiation to initiate localized photothermal treatment.This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflam-matory diseases.展开更多
A major bottleneck underlying nanomaterial-based tumor therapy lies in complex biological environment and physiological barriers.Micro/nanorobots with the features of self-propulsion and controllable navigation have g...A major bottleneck underlying nanomaterial-based tumor therapy lies in complex biological environment and physiological barriers.Micro/nanorobots with the features of self-propulsion and controllable navigation have gradually become a research hotspot in the tumor therapeutic community,exhibiting their advantages in efficient cargo loading,controllable cargo delivery,stimulitriggered cargo release,deeper tumor tissue penetration,and enhanced cargo accumulation in tumor tissue.In this review,the self-propulsion and controllable navigation are introduced as two major properties of micro/nanorobots,in which micro/nanorobots are propelled by chemical reactions,physical fields,and biological systems and could be navigated by chemotaxis,remote magnetic guidance,and light.Then,the recent advances of micro/nanorobots for chemotherapy,immunotherapy,photothermal therapy,photodynamic therapy,chemodynamic therapy,and multimodal tumor therapy would be discussed.Finally,the perspective and challenges are also mentioned.It is expected that this review gives an insight into intelligent micro/nanorobots for improved tumor therapy,aiming for more extensive and in-depth investigations,and final applications in the clinic.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
Surgery remains the standard treatment for spinal metastasis.However,uncontrolled intraoperative bleeding poses a significant challenge for adequate surgical resection and compromises surgical outcomes.In this study,w...Surgery remains the standard treatment for spinal metastasis.However,uncontrolled intraoperative bleeding poses a significant challenge for adequate surgical resection and compromises surgical outcomes.In this study,we develop a thrombin(Thr)-loaded nanorobothydrogel hybrid superstructure by incorporating nanorobots into regenerated silk fibroin nanofibril hydrogels.This superstructure with superior thixotropic properties is injected percutaneously and dispersed into the spinal metastasis of hepatocellular carcinoma(HCC)with easy bleeding characteristics,before spinal surgery in a mouse model.Under near-infrared irradiation,the self-motile nanorobots penetrate into the deep spinal tumor,releasing Thr in a controlled manner.Thr-induced thrombosis effectively blocks the tumor vasculature and reduces bleeding,inhibiting tumor growth and postoperative recurrence with Au nanorod-mediated photothermal therapy.Our minimally invasive treatment platform provides a novel preoperative therapeutic strategy for HCC spinal metastasis effectively controlling intraoperative bleeding and tumor growth,with potentially reduced surgical complications and enhanced operative outcomes.展开更多
基金National Natural Science Foundation of China(Nos.52125505,U23A20637)。
文摘Micro/nanorobots(MNRs)capable of performing tasks at the micro-and nanoscale hold great promise for applications in cutting-edge fields such as biomedical engineering,environmental engineering,and microfabrication.To cope with the intricate and dynamic environments encountered in practical applications,the development of high performance MNRs is crucial.They have evolved from single-material,single-function,and simple structure to multi-material,multi-function,and complex structure.However,the design and manufacturing of high performance MNRs with complex multi-material three-dimensional structures at the micro-and nanoscale pose significant challenges that cannot be addressed by conventional serial design strategies and single-process manufacturing methods.The material-interface-structure-function/performance coupled design methods and the additive/formative/subtractive composite manufacturing methods offer the opportunity to design and manufacture MNRs with multimaterials and complex structures under multi-factor coupling,thus paving the way for the development of high performance MNRs.In this paper,we take the three core capabilities of MNRs—mobility,controllability,and load capability—as the focal point,emphasizing the coupled design methods oriented towards their function/performance and the composite manufacturing methods for their functional structures.The limitations of current investigation are also discussed,and our envisioned future directions for design and manufacture of MNRs are shared.We hope that this review will provide a framework template for the design and manufacture of high performance MNRs,serving as a roadmap for researchers interested in this area.
基金supported by the National Natural Science Foundation under Project No. 52205590the Natural Science Foundation of Jiangsu Province under Project No. BK20220834+4 种基金the Start-up Research Fund of Southeast University under Project No. RF1028623098the Xiaomi Foundation/ Xiaomi Young Talents Programsupported by the Research Impact Fund (project no. R4015-21)Research Fellow Scheme (project no. RFS2122-4S03)the EU-Hong Kong Research and Innovation Cooperation Co-funding Mechanism (project no. E-CUHK401/20) from the Research Grants Council (RGC) of Hong Kong, the SIAT-CUHK Joint Laboratory of Robotics and Intelligent Systems, and the Multi-Scale Medical Robotics Center (MRC), InnoHK, at the Hong Kong Science Park
文摘Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.
文摘Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub- micrometer precision under low-strength rotating magnetic fields (〈 10 rer). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/ nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.
基金supported by the National Key Research and Development Project(No.2021YFA1201400)National Natural Science Foundation of China(Nos.52073222,51573144 and 21474078)the Fundamental Research Funds for the Central Universities(WUT:2021IVA118 and 2022IVA201).
文摘Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments.Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment.The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe_(3)O_(4)nanoparticles encapsulated in a responsive hydrogel shell,and show multiple integrated functions,including energetic magnetically-driven swarming motions,bright stimuli-responsive structural colors,and photothermal conversion.Thus,they can actively navigate in complex environments utilizing their controllable swarming motions,then visualize unknown targets(e.g.,tumor lesion)by collectively mapping out local abnormal physicochemical conditions(e.g.,pH,temperature,or glucose concentra-tion)via their responsive structural colors,and further guide external light irradiation to initiate localized photothermal treatment.This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflam-matory diseases.
基金National Key R&D Program of China,Grant/Award Number:2017YFA0206301National Natural Science Foundation of China,Grant/Award Numbers:52027801,51631001+1 种基金Natural Science Foundation of Beijing Municipality,Grant/Award Number:2191001China-Germany Collaboration Project,Grant/Award Number:M-0199。
文摘A major bottleneck underlying nanomaterial-based tumor therapy lies in complex biological environment and physiological barriers.Micro/nanorobots with the features of self-propulsion and controllable navigation have gradually become a research hotspot in the tumor therapeutic community,exhibiting their advantages in efficient cargo loading,controllable cargo delivery,stimulitriggered cargo release,deeper tumor tissue penetration,and enhanced cargo accumulation in tumor tissue.In this review,the self-propulsion and controllable navigation are introduced as two major properties of micro/nanorobots,in which micro/nanorobots are propelled by chemical reactions,physical fields,and biological systems and could be navigated by chemotaxis,remote magnetic guidance,and light.Then,the recent advances of micro/nanorobots for chemotherapy,immunotherapy,photothermal therapy,photodynamic therapy,chemodynamic therapy,and multimodal tumor therapy would be discussed.Finally,the perspective and challenges are also mentioned.It is expected that this review gives an insight into intelligent micro/nanorobots for improved tumor therapy,aiming for more extensive and in-depth investigations,and final applications in the clinic.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金supported by the National Natural Science Foundation of China(No.52103171,82172738,82272457,22305044)China Postdoctoral Science Foundation(2023M730638)+3 种基金“Technology Innovation Action Plan”of Science and Technology Commission of Shanghai Municipality(21S11902700)Natural Science Foundation of Shanghai(21ZR1412300),Shanghai Science and Technology program(23Y31900202,23010502600)Shanghai“Rising Stars of Medical Talent”Youth Development Program(Youth Medical Talents-Specialist Program,[2020]087)Medical Engineering fund of Fudan University(yg2023-27).
文摘Surgery remains the standard treatment for spinal metastasis.However,uncontrolled intraoperative bleeding poses a significant challenge for adequate surgical resection and compromises surgical outcomes.In this study,we develop a thrombin(Thr)-loaded nanorobothydrogel hybrid superstructure by incorporating nanorobots into regenerated silk fibroin nanofibril hydrogels.This superstructure with superior thixotropic properties is injected percutaneously and dispersed into the spinal metastasis of hepatocellular carcinoma(HCC)with easy bleeding characteristics,before spinal surgery in a mouse model.Under near-infrared irradiation,the self-motile nanorobots penetrate into the deep spinal tumor,releasing Thr in a controlled manner.Thr-induced thrombosis effectively blocks the tumor vasculature and reduces bleeding,inhibiting tumor growth and postoperative recurrence with Au nanorod-mediated photothermal therapy.Our minimally invasive treatment platform provides a novel preoperative therapeutic strategy for HCC spinal metastasis effectively controlling intraoperative bleeding and tumor growth,with potentially reduced surgical complications and enhanced operative outcomes.