This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer...This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.展开更多
The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties...The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.展开更多
Microarc oxidation (MAO) process was conducted on AZ91D magnesium alloy in an electrolyte composed of NazSiO3, NaAlO2, NaEB4O7, NaOH, C3H803 and C6H5Na307 by AC pulse electrical source. The surface and cross-section...Microarc oxidation (MAO) process was conducted on AZ91D magnesium alloy in an electrolyte composed of NazSiO3, NaAlO2, NaEB4O7, NaOH, C3H803 and C6H5Na307 by AC pulse electrical source. The surface and cross-sectional morphologies, film thickness, chemical composition and structure of the coatings were characterized by scanning electron microscopy(SEM), layer thickness metry, energy disperse spectroscopy(EDS) and X-ray diffraction(XRD). The corrosiofi resistances of the coatings in a 3.5% NaC1 neutral solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The results showed that an optimized electrolyte with a composition of 15 g/L NazSiO3, 9 g/L NaA102, 2 g/L NazB407, 3 g/L NaOH, 5 mL/L C3H803 and 7 g/LC,HsNa307 was developed by means of orthogonal experiment. The coating obtained in the optimized electrolyte had a dense structure and revealed a lower current density, decreased by two orders of magnitude as compared with the magnesium substrate. Meanwhile, the corrosive potentials of the coated samples increased nearly by 73 inV. EIS result showed that the corrosion resistance of the coating was mainly determined by the inner dense layer. The coating primarily contained elements Mg, Al, O and Si and XRD analyses indicated that the coating was mainly composed of MgO, Mg2SiO4 and MgAl204.展开更多
The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),...The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.展开更多
Zirconia coatings as hydrogen permeation barriers were formed on disktype ZrHj.s substrate speci mens in phosphate solution system by microarc oxidation technique. Influence of positive voltage on hydrogen per meation...Zirconia coatings as hydrogen permeation barriers were formed on disktype ZrHj.s substrate speci mens in phosphate solution system by microarc oxidation technique. Influence of positive voltage on hydrogen per meation barriers on the surface of zirconium hydride was investigated as the main factor. The thickness of total oxide layer increased from 42.5 to 55.0 ~tm the increase of positive voltage increasing from 325 up to 425 V. The permeation reduction factor (PRF) was observed under different voltages, which increased with the increasing positive voltages. The phase structure of oxide layer was monoclinic Zr02 and tetragonal ZrO1.88. No reduction reaction occured in the process of hydrogen escaping, and it indicates that hydrogen permeation through oxide layer is restricted.展开更多
Key Laboratory for Beam Technology and Materials Modification, Institute ofLow Energy Nuclear Physics, Beijing Normal UniversityThe morphology, composition, and phase structure of the oxide coatings produced on the su...Key Laboratory for Beam Technology and Materials Modification, Institute ofLow Energy Nuclear Physics, Beijing Normal UniversityThe morphology, composition, and phase structure of the oxide coatings produced on the surface ofpure titanium by alternating-current microarc discharge in aluminate solution were investigated byX-ray diffraction and scanning electron microscopy. The profiles of the hardness H and the elasticmodulus E in the coatings were determined using a nanoindentation method. The concentrationdistributions of Ti, Al, and O in the coating show that this coating over 30 mu m thick contains twolayers: an outer layer and an inner layer. The oxide coating is mainly composed of TiO_2 rutile andAl_2TiO_5 compounds. During oxidation, the temperature in the microarc discharge channel was veryhigh to make the local coating molten. From the surface to the interior of the coating, H and Eincrease gradually, and then reach maximum values of 9.78 GPa and 176 GPa respectively at a distanceof 7 mu m from the coating/titanium interface. They are also rather high near the interface.展开更多
Ceramic coatings containing ZrO2 were prepared in situ on LY12 aluminum alloy by microarc oxidation(MAO) in the mixed solution of zirconate and phosphate solution.The phase composition and morphology of the coatings...Ceramic coatings containing ZrO2 were prepared in situ on LY12 aluminum alloy by microarc oxidation(MAO) in the mixed solution of zirconate and phosphate solution.The phase composition and morphology of the coatings were studied by XRD and SEM,respectively.The growing mechanism of ceramic coatings was discussed in a preliminary manner.The results show that with an increase in MAO time,the compactness of the coating improved and the thickness increased.From the inner layer to the coating surface,the content of Zr increased,while the content of Al decreased.In addition,the coating was composed of m-ZrO2,t-ZrO2,and a little amount of γ-Al2O3.With an increase in reaction time,the relative content of t-ZrO2 within the coating sharply decreased while the relative content of m-ZrO2 sharply increased,and then both generally kept at a constant level after 60 min.展开更多
The combined microarc oxidation (MAO) and inorganic sealing process was used to deposit a composite coating to improve the corrosion resistance of AZ31 magnesium alloy.The surface morphologies of the resulting duplex ...The combined microarc oxidation (MAO) and inorganic sealing process was used to deposit a composite coating to improve the corrosion resistance of AZ31 magnesium alloy.The surface morphologies of the resulting duplex coatings were studied by SEM.Furthermore,the corrosion resistance of the coated Mg alloy substrates was investigated using electrochemical workstation and dropping corrosion test.The results show that the composite coating surface consists of Mg,Si,O and Na.It is difficult to deposit inorganic coating on a thick MAO coating surface.As the composite coating was solidified by CO2 under 175 °C,it exhibits a better corrosion resistance than the MAO monolayer,owing to the thick and compact inorganic coating.展开更多
The combined microarc oxidation (MAO) and magnetron sputtering deposition process was used to deposit duplex a-C:H/MAO and Ti-a-C:H/MAO coatings on AM80 magnesium alloy. The microstructure, mechanical properties a...The combined microarc oxidation (MAO) and magnetron sputtering deposition process was used to deposit duplex a-C:H/MAO and Ti-a-C:H/MAO coatings on AM80 magnesium alloy. The microstructure, mechanical properties and tribological behavior of the two duplex coatings were investigated. The experimental results showed that the a-C:H and Ti-a-C:H top films on Si substrates were dense and had a low G peak position and ID/IG ratio, compared with the hydrogen-free amorphous carbon films. Numerous micropores were found on the duplex a-C:H/MAO and Ti-a-C:H/MAO coatings together with low values of hardness (H) and elastic modulus (E), which also showed good binding strength with the Mg alloy substrates. Compared to MAO treated substrate used for the protection of the Mg alloy, the duplex a-C:H/MAO and Ti-a- C:H/MAO coatings still had stable and low value of friction coefficient, even though the surface of the duplex coatings was rough and porous. Furthermore, the mechanism of friction reduction of the two duplex coatings on the Mg alloy substrates was discussed.展开更多
A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetro...A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetron sputter process.Subsequently,a PDMS solution was used to modify the MAO/DLC coating via a conventional dip-coating method.The surface characteristics,bond strength,hardness,tribological behaviour,and corrosion resistance of the coated samples were evaluated via SEM,CA,Raman spectroscopy,friction and wear behaviour,polarisation curve,and NSS tests.The PDMS modification reduced the HIT of MAO/DLC coating from 15.96 to 8.34GPa;this is ascribed to the penetration of PDMS,which has good rheological properties to form a viscoelastic Si-based organic polymer layer on the MAO/DLC coating.However,the PDMS-modified MAO/DLC coating was denser,hydrophobic,and had higher bond strength compared with MAO-and MAO/DLC-coated samples.Moreover,the PDMS modification reduced the COF and wear rate of the duplex MAO/DLC coating.This indicates that the PDMS improved the tribological behaviour owing to the transferred Si oxide that originated from the Si-O network of the PDMS,as well as the low graphitisation of the DLC layer during sliding.Furthermore,the corrosion current density of the MAO/DLC-coated sample modified by PDMS for 10min decreased by two order of magnitude compared with that of the MAO/DLC-coated sample but by five orders of magnitude compared with that of the bare substrate.The NSS tests proved that the PDMS layer slowed the corrosion of the Mg alloy under long-term service,enhancing the corrosion protection efficiency.The results are attributed to the high bond strength and lubricant MAO/DLC layer,and the dual role of sealing and hydrophobicity of PDMS.Therefore,PDMS modification is promising for the fabrication of protective materials for Mg alloys that require corrosion and wear resistance.展开更多
Dense ceramic oxide coatings of about 50 μm may be prepared on Ti-6AI-4V alloy surface by alternating-current microarc oxidation in aluminate and silicate solutions, respectively. Their phase constituent and microstr...Dense ceramic oxide coatings of about 50 μm may be prepared on Ti-6AI-4V alloy surface by alternating-current microarc oxidation in aluminate and silicate solutions, respectively. Their phase constituent and microstructure were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the electrolytic ions have incorporated into the interior of the coatings. The coating formed in aluminate solution is composed of the rutile TiO2 and TiAl2O5 phases rather than the rutile, anatase and amorphous SiO2 phases for the coating formed in silicate solution. However, TiAl2O5 content in the outer layer of the two coatings is much higher than in the inner layer. It is suggested that all these oxides may result from a rapid solidification of the molten coating in the microarc discharge zone.展开更多
The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmissi...The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and potentiodynamic polarization.The results showed that B_(4)O_(7)^(2−)increased the spark intensity and dissolved most of the oxides at high temperatures.Then,a thicker barrier layer at the coating/substrate interface was produced,which increased the polarization resistance of the coating.PO_(4)^(3−)at a low concentration also promoted the uniform growth of the MAO coating and the formation of hat-shaped holes in the outer deposition layer.The thickness of the MAO coatings obtained in Na_(2)B_(4)O_(7) electrolytes exhibited an exponential increase with time at spark discharge stage,while that of the MAO coating obtained in phosphate–tetraborate electrolytes showed a linear trend as the PO_(4)^(3−)content increased.展开更多
Microarc oxidation(MAO)is an effective surface treatment method for Ti alloys to allow their application in extreme environments.Here,binary electrolytes consisting of different amounts of sodium phosphate and sodium ...Microarc oxidation(MAO)is an effective surface treatment method for Ti alloys to allow their application in extreme environments.Here,binary electrolytes consisting of different amounts of sodium phosphate and sodium silicate were designed for MAO.The surface morphology,composition,and properties of MAO coatings on Ti-6Al-4V alloy treated in 0.10 mol/L electrolyte were investigated to reveal the effect of PO_(4)^(3-)and SiO_(3)^(2-)ray diffraction,and potentiodynamic polarization.The results showed that PO_(4)^(3-)is beneficial for generating microarcs and forming pores within the coating,resulting in a thick but porous coating.SiO_(3)^(2-)eration of microarcs,resulting in a thin dense coating.The thickness,density,phases content,and polarization resistance of the MAO coatings are primarily affected by the intensity of microarcs for low SiO_(3)^(2-)ciently high.The thickness of MAO coatings obtained in P/Si electrolytes shows a piecewise linear increase with increasing process time during the three stages of microarc discharge.SiO_(3)^(2-)discharge,but slows down the growth of the coating formed in the next stage.展开更多
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as ful...In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.展开更多
Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by s...Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.展开更多
Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scann...Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scanning electron microscope (SEM) and x-ray diffraction (XRD) are employed to characterize the microstructure and phase composition of coatings. The results show that the coating thickness increases linearly as the treatment time increases. The coatings are mainly composed of anatase and rutile (TiO2). With the increase of treatment time, the predominant phase composition varies from anatase to rutile, which indicates that phase transformation of anatase into rutile occurs in the oxidizing process. Meanwhile, the size of grains existing on the coating surface increases and thus the surface becomes much coarser.展开更多
The mechanical properties of aluminum alloy treated by plasma microarc oxidation (PMAO) were researched. The tensile tests were carried out at room temperature, 100, 200 and 300℃, respectively. Then the fractograph...The mechanical properties of aluminum alloy treated by plasma microarc oxidation (PMAO) were researched. The tensile tests were carried out at room temperature, 100, 200 and 300℃, respectively. Then the fractographs of tensile specimens and surface morphology of ceramic coating were studied by using SEM, at the same time, the nano-hardness and elastic modulus of the ceramic coating were determined using Nano Indenter XP system. The results show that the surface hardness of aluminum alloy increases greatly and the fracture strength of aluminum alloy coated by ceramic coating is not reduced at high temperature.展开更多
This paper studied the appearance transition of microdischarges, the phase composition and the morphology evolution of the oxide film formed by microarc oxidation on AZ91D magnesium alloy. The appearance of microdisch...This paper studied the appearance transition of microdischarges, the phase composition and the morphology evolution of the oxide film formed by microarc oxidation on AZ91D magnesium alloy. The appearance of microdischarges population experienced apparent changes in size, spatial density and color, which was related with the changes of the type and quantity of the disintegrated gas bubbles generated at the interface between the electrolyte and substrate. Correspondingly, the diameter of micropores together with net-like fine microcracks increased when a higher voltage was employed. The coating was composed of MgO, MgAl2O4 and there existed a fluoride-enriched zone of about 3-5μm at the film/substrate interface.展开更多
In order to obtain optimizing microarc oxidation coating on Mg alloy from a friendly-enviormental electrolyte free of Cr6+ and PO43-, constant potential regime was applied to produce it. The influence of potential on ...In order to obtain optimizing microarc oxidation coating on Mg alloy from a friendly-enviormental electrolyte free of Cr6+ and PO43-, constant potential regime was applied to produce it. The influence of potential on the morphology, composition, structure and other properties, such as microhardness and corrosion resistance were investigated by scanning electron microscopy (SEM), energy dispersive spectroscope (EDS), X-ray diffraction (XRD), hardness tester and electrochemical method. The results clearly show that oxidation potential plays an important role in the formation of coating's structure and properties. The microarc oxidation coating is smooth and white, which consists of two layers. The external layer is loose and porous and enriched in Al and Si. Moreover, its content of Al and Si increases with the increasing operated potential. While the inner layer is compact and the content of Al and Si are lower than that of the external layer. The coating is composed of several phases and the major phases are MgA12O4 and MgO, and the minor phases are Al2O3 and SiO2 when the potential is higher. The microhardness of coating is obtained the maximum at the potential of 45 V, so does the corrosion resistance.展开更多
The magnesium has some excellent properties such as ligh quality, high specific strength and stiffness, high damp and reeoverd easily compared with steel, aluminium, engineering plastic. So the application and exploit...The magnesium has some excellent properties such as ligh quality, high specific strength and stiffness, high damp and reeoverd easily compared with steel, aluminium, engineering plastic. So the application and exploitation of magnesium arose extensive attention of the public.展开更多
基金funded by China Postdoctoral Science Foundation(No.2021M700569)Chongqing Postdoctoral Science Foundation(No.7 cstc2021jcyj-bshX0087)。
文摘This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.
基金Project(11005151)supported by the Young Scientists Fund of the National Natural Science Foundation of ChinaProject(YETP1297)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(BEIJ2014110003)supported by the Undergraduate Research and Innovative Undertaking Program of Beijing,China
文摘The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.
基金Project (12504230006) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘Microarc oxidation (MAO) process was conducted on AZ91D magnesium alloy in an electrolyte composed of NazSiO3, NaAlO2, NaEB4O7, NaOH, C3H803 and C6H5Na307 by AC pulse electrical source. The surface and cross-sectional morphologies, film thickness, chemical composition and structure of the coatings were characterized by scanning electron microscopy(SEM), layer thickness metry, energy disperse spectroscopy(EDS) and X-ray diffraction(XRD). The corrosiofi resistances of the coatings in a 3.5% NaC1 neutral solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The results showed that an optimized electrolyte with a composition of 15 g/L NazSiO3, 9 g/L NaA102, 2 g/L NazB407, 3 g/L NaOH, 5 mL/L C3H803 and 7 g/LC,HsNa307 was developed by means of orthogonal experiment. The coating obtained in the optimized electrolyte had a dense structure and revealed a lower current density, decreased by two orders of magnitude as compared with the magnesium substrate. Meanwhile, the corrosive potentials of the coated samples increased nearly by 73 inV. EIS result showed that the corrosion resistance of the coating was mainly determined by the inner dense layer. The coating primarily contained elements Mg, Al, O and Si and XRD analyses indicated that the coating was mainly composed of MgO, Mg2SiO4 and MgAl204.
文摘The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.
基金supported by the National Natural Science Foundation of China(No.51164023)Inner Mongolia Natural Science Foundation(No.2009BS0801)
文摘Zirconia coatings as hydrogen permeation barriers were formed on disktype ZrHj.s substrate speci mens in phosphate solution system by microarc oxidation technique. Influence of positive voltage on hydrogen per meation barriers on the surface of zirconium hydride was investigated as the main factor. The thickness of total oxide layer increased from 42.5 to 55.0 ~tm the increase of positive voltage increasing from 325 up to 425 V. The permeation reduction factor (PRF) was observed under different voltages, which increased with the increasing positive voltages. The phase structure of oxide layer was monoclinic Zr02 and tetragonal ZrO1.88. No reduction reaction occured in the process of hydrogen escaping, and it indicates that hydrogen permeation through oxide layer is restricted.
文摘Key Laboratory for Beam Technology and Materials Modification, Institute ofLow Energy Nuclear Physics, Beijing Normal UniversityThe morphology, composition, and phase structure of the oxide coatings produced on the surface ofpure titanium by alternating-current microarc discharge in aluminate solution were investigated byX-ray diffraction and scanning electron microscopy. The profiles of the hardness H and the elasticmodulus E in the coatings were determined using a nanoindentation method. The concentrationdistributions of Ti, Al, and O in the coating show that this coating over 30 mu m thick contains twolayers: an outer layer and an inner layer. The oxide coating is mainly composed of TiO_2 rutile andAl_2TiO_5 compounds. During oxidation, the temperature in the microarc discharge channel was veryhigh to make the local coating molten. From the surface to the interior of the coating, H and Eincrease gradually, and then reach maximum values of 9.78 GPa and 176 GPa respectively at a distanceof 7 mu m from the coating/titanium interface. They are also rather high near the interface.
基金supported by the National Natural Science Foundation of China(No.50171026)Harbin Special Creation Foundation of Science and Technology for Fellow of China(No.2006RFQXG032).
文摘Ceramic coatings containing ZrO2 were prepared in situ on LY12 aluminum alloy by microarc oxidation(MAO) in the mixed solution of zirconate and phosphate solution.The phase composition and morphology of the coatings were studied by XRD and SEM,respectively.The growing mechanism of ceramic coatings was discussed in a preliminary manner.The results show that with an increase in MAO time,the compactness of the coating improved and the thickness increased.From the inner layer to the coating surface,the content of Zr increased,while the content of Al decreased.In addition,the coating was composed of m-ZrO2,t-ZrO2,and a little amount of γ-Al2O3.With an increase in reaction time,the relative content of t-ZrO2 within the coating sharply decreased while the relative content of m-ZrO2 sharply increased,and then both generally kept at a constant level after 60 min.
基金Project(51201176)supported by the National Natural Science Foundation of ChinaProject(2006BAE04B05-1)supported by the National Key Technologies of Research and Development Program of China
文摘The combined microarc oxidation (MAO) and inorganic sealing process was used to deposit a composite coating to improve the corrosion resistance of AZ31 magnesium alloy.The surface morphologies of the resulting duplex coatings were studied by SEM.Furthermore,the corrosion resistance of the coated Mg alloy substrates was investigated using electrochemical workstation and dropping corrosion test.The results show that the composite coating surface consists of Mg,Si,O and Na.It is difficult to deposit inorganic coating on a thick MAO coating surface.As the composite coating was solidified by CO2 under 175 °C,it exhibits a better corrosion resistance than the MAO monolayer,owing to the thick and compact inorganic coating.
基金Funded by the National Natural Science Foundation of China(No.51201176)the Zhejiang Provincial Natural Science Foundation of China(No.Y2110401)the Natural Science Foundation of Shaanxi Province(No.2015JM5176)
文摘The combined microarc oxidation (MAO) and magnetron sputtering deposition process was used to deposit duplex a-C:H/MAO and Ti-a-C:H/MAO coatings on AM80 magnesium alloy. The microstructure, mechanical properties and tribological behavior of the two duplex coatings were investigated. The experimental results showed that the a-C:H and Ti-a-C:H top films on Si substrates were dense and had a low G peak position and ID/IG ratio, compared with the hydrogen-free amorphous carbon films. Numerous micropores were found on the duplex a-C:H/MAO and Ti-a-C:H/MAO coatings together with low values of hardness (H) and elastic modulus (E), which also showed good binding strength with the Mg alloy substrates. Compared to MAO treated substrate used for the protection of the Mg alloy, the duplex a-C:H/MAO and Ti-a- C:H/MAO coatings still had stable and low value of friction coefficient, even though the surface of the duplex coatings was rough and porous. Furthermore, the mechanism of friction reduction of the two duplex coatings on the Mg alloy substrates was discussed.
基金This work was supported by Special Fund for Local Science and Technology Development from the Ministry of Science and Technology of China(2020ZYD053)Science and Technology Planning Project of Zigong(2019YYJC22)Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities(2020JXY05).
文摘A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetron sputter process.Subsequently,a PDMS solution was used to modify the MAO/DLC coating via a conventional dip-coating method.The surface characteristics,bond strength,hardness,tribological behaviour,and corrosion resistance of the coated samples were evaluated via SEM,CA,Raman spectroscopy,friction and wear behaviour,polarisation curve,and NSS tests.The PDMS modification reduced the HIT of MAO/DLC coating from 15.96 to 8.34GPa;this is ascribed to the penetration of PDMS,which has good rheological properties to form a viscoelastic Si-based organic polymer layer on the MAO/DLC coating.However,the PDMS-modified MAO/DLC coating was denser,hydrophobic,and had higher bond strength compared with MAO-and MAO/DLC-coated samples.Moreover,the PDMS modification reduced the COF and wear rate of the duplex MAO/DLC coating.This indicates that the PDMS improved the tribological behaviour owing to the transferred Si oxide that originated from the Si-O network of the PDMS,as well as the low graphitisation of the DLC layer during sliding.Furthermore,the corrosion current density of the MAO/DLC-coated sample modified by PDMS for 10min decreased by two order of magnitude compared with that of the MAO/DLC-coated sample but by five orders of magnitude compared with that of the bare substrate.The NSS tests proved that the PDMS layer slowed the corrosion of the Mg alloy under long-term service,enhancing the corrosion protection efficiency.The results are attributed to the high bond strength and lubricant MAO/DLC layer,and the dual role of sealing and hydrophobicity of PDMS.Therefore,PDMS modification is promising for the fabrication of protective materials for Mg alloys that require corrosion and wear resistance.
基金This rescarch was sponsored by the National"863"High-tech Progran of China(No.715-011-020)the National Natural Science Foundation of China(No.59801003)Beijing New-Star Progratn for Science and Technology(No.9558102500).
文摘Dense ceramic oxide coatings of about 50 μm may be prepared on Ti-6AI-4V alloy surface by alternating-current microarc oxidation in aluminate and silicate solutions, respectively. Their phase constituent and microstructure were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the electrolytic ions have incorporated into the interior of the coatings. The coating formed in aluminate solution is composed of the rutile TiO2 and TiAl2O5 phases rather than the rutile, anatase and amorphous SiO2 phases for the coating formed in silicate solution. However, TiAl2O5 content in the outer layer of the two coatings is much higher than in the inner layer. It is suggested that all these oxides may result from a rapid solidification of the molten coating in the microarc discharge zone.
文摘The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and potentiodynamic polarization.The results showed that B_(4)O_(7)^(2−)increased the spark intensity and dissolved most of the oxides at high temperatures.Then,a thicker barrier layer at the coating/substrate interface was produced,which increased the polarization resistance of the coating.PO_(4)^(3−)at a low concentration also promoted the uniform growth of the MAO coating and the formation of hat-shaped holes in the outer deposition layer.The thickness of the MAO coatings obtained in Na_(2)B_(4)O_(7) electrolytes exhibited an exponential increase with time at spark discharge stage,while that of the MAO coating obtained in phosphate–tetraborate electrolytes showed a linear trend as the PO_(4)^(3−)content increased.
基金financially supported by China Postdoctoral Science Foundation (No.2021M700569)Chongqing Postdoctoral Science Foundation (No.cstc2021jcyj-bsh0133)
文摘Microarc oxidation(MAO)is an effective surface treatment method for Ti alloys to allow their application in extreme environments.Here,binary electrolytes consisting of different amounts of sodium phosphate and sodium silicate were designed for MAO.The surface morphology,composition,and properties of MAO coatings on Ti-6Al-4V alloy treated in 0.10 mol/L electrolyte were investigated to reveal the effect of PO_(4)^(3-)and SiO_(3)^(2-)ray diffraction,and potentiodynamic polarization.The results showed that PO_(4)^(3-)is beneficial for generating microarcs and forming pores within the coating,resulting in a thick but porous coating.SiO_(3)^(2-)eration of microarcs,resulting in a thin dense coating.The thickness,density,phases content,and polarization resistance of the MAO coatings are primarily affected by the intensity of microarcs for low SiO_(3)^(2-)ciently high.The thickness of MAO coatings obtained in P/Si electrolytes shows a piecewise linear increase with increasing process time during the three stages of microarc discharge.SiO_(3)^(2-)discharge,but slows down the growth of the coating formed in the next stage.
基金the Department of Metallurgical and Materials Engineering,National Institute of Technology,Tiruchirapalli for providing the funds and facilities to conduct this research work
文摘In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.
基金Project(2008BAE63B00) supported by the National Key Technologies Research and Development Program of China
文摘Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.
文摘Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scanning electron microscope (SEM) and x-ray diffraction (XRD) are employed to characterize the microstructure and phase composition of coatings. The results show that the coating thickness increases linearly as the treatment time increases. The coatings are mainly composed of anatase and rutile (TiO2). With the increase of treatment time, the predominant phase composition varies from anatase to rutile, which indicates that phase transformation of anatase into rutile occurs in the oxidizing process. Meanwhile, the size of grains existing on the coating surface increases and thus the surface becomes much coarser.
文摘The mechanical properties of aluminum alloy treated by plasma microarc oxidation (PMAO) were researched. The tensile tests were carried out at room temperature, 100, 200 and 300℃, respectively. Then the fractographs of tensile specimens and surface morphology of ceramic coating were studied by using SEM, at the same time, the nano-hardness and elastic modulus of the ceramic coating were determined using Nano Indenter XP system. The results show that the surface hardness of aluminum alloy increases greatly and the fracture strength of aluminum alloy coated by ceramic coating is not reduced at high temperature.
基金the Natural Science Foundation of Hubei Province (2002ABB051)
文摘This paper studied the appearance transition of microdischarges, the phase composition and the morphology evolution of the oxide film formed by microarc oxidation on AZ91D magnesium alloy. The appearance of microdischarges population experienced apparent changes in size, spatial density and color, which was related with the changes of the type and quantity of the disintegrated gas bubbles generated at the interface between the electrolyte and substrate. Correspondingly, the diameter of micropores together with net-like fine microcracks increased when a higher voltage was employed. The coating was composed of MgO, MgAl2O4 and there existed a fluoride-enriched zone of about 3-5μm at the film/substrate interface.
文摘In order to obtain optimizing microarc oxidation coating on Mg alloy from a friendly-enviormental electrolyte free of Cr6+ and PO43-, constant potential regime was applied to produce it. The influence of potential on the morphology, composition, structure and other properties, such as microhardness and corrosion resistance were investigated by scanning electron microscopy (SEM), energy dispersive spectroscope (EDS), X-ray diffraction (XRD), hardness tester and electrochemical method. The results clearly show that oxidation potential plays an important role in the formation of coating's structure and properties. The microarc oxidation coating is smooth and white, which consists of two layers. The external layer is loose and porous and enriched in Al and Si. Moreover, its content of Al and Si increases with the increasing operated potential. While the inner layer is compact and the content of Al and Si are lower than that of the external layer. The coating is composed of several phases and the major phases are MgA12O4 and MgO, and the minor phases are Al2O3 and SiO2 when the potential is higher. The microhardness of coating is obtained the maximum at the potential of 45 V, so does the corrosion resistance.
文摘The magnesium has some excellent properties such as ligh quality, high specific strength and stiffness, high damp and reeoverd easily compared with steel, aluminium, engineering plastic. So the application and exploitation of magnesium arose extensive attention of the public.