In this work,a fast and efficient microwave-assisted extraction(MAE) method was developed to extract main bioactive alkaloids from lotus plumue.To optimize MAE conditions,three main factors were selected using univari...In this work,a fast and efficient microwave-assisted extraction(MAE) method was developed to extract main bioactive alkaloids from lotus plumue.To optimize MAE conditions,three main factors were selected using univariate approach experiments,and then central composite design(CCD).The optimal extraction conditions were as follows:methanol concentration of 65%,microwave power of 200 W,and extraction time of 260 s.A high performance liquid chromatography–diode array detector(HPLC–DAD) method was established to quantitatively analyze these phytochemicals in different lotus plumule samples and in different part of lotus.Chromatographic separation was carried out on an Agilent Zorbax Extend-C_(18) column(4.6 mm×150 mm,3.5 μm).Gradient elution was applied with the mobile phase constituted with 0.1% triethylamine in water(A)and acetonitrile(B):40%-70% B at 0-8 min,70%-100% B at 8–9 min,100% B for 2 min,and then equilibrated with 40% B for 2 min.展开更多
In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were in...In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were investigated. The experiments were carried out based on a 3-level, 4-variable Box–Behnken design. The amount of zinc was considered as a function of four independent variables, namely irradiation power, irradiation time, nitric acid concentration, and temperature. The RSM results showed the quadratic polynomial model can be used to describe the relationship between the various factors and the response. Using the ANN analysis, the optimal configuration of the ANN model was found to be 4-10-1. After predicting the model using RSM and ANN, two methodologies were then compared for their predictive capabilities. The results showed that the ANN model is much more accurate in prediction as compared to the RSM.展开更多
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy...This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.展开更多
Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to ...Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.展开更多
Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still car...Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and li...A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and linear sweep voltammetry.The cubic TiO2particles were approximately60nm in size and were distributed on the graphene sheets.The Pt nanoparticles were uniformly distributed between the TiO2particles and the graphene sheet.The catalyst exhibited a significant improvement in activity and stability towards the oxygen reduction reaction compared with Pt/C,which resulted from the high electronic conductivity of graphene and strong metal‐support interactions.展开更多
This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra...This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.展开更多
A new and simple microwave-assisted alkaline degradation (MAAD) method for the elimination of organoehlorine-pesticide interference on the determination of polychlorinated biphenyls (PCBs) in soil by GC is present...A new and simple microwave-assisted alkaline degradation (MAAD) method for the elimination of organoehlorine-pesticide interference on the determination of polychlorinated biphenyls (PCBs) in soil by GC is presented. Under the optimal conditions, the interference of α- HCH, β- HCH, γ -HCH,δ -HCH, o. p' - DDT, p. p' - DDD and p. p' - DDT could be eliminated completely, and p. p' - DDE, Aldrin and Dieldrin could be partially eliminated; however, Dieldrin could be completely eliminated by using concentrated sulphurie acid. The method was evaluated by analyzing the spiked-soil sample. The mean recovery obtained was 84. 1% and the Relative Standard Deviation (RSD) was 2. 7%. Experimental results also indicate that the degradation of the interference and the extraction of the target analytes, PCBs, could be carried out simuhaneously. Compared with the traditional methods, the MAAD method is a rapid, efficient and solvent-saving method,展开更多
Zr4+ doped Bi2WO6 was prepared by a fast microwave-assisted hydrothermal method and used for photocatalytic degradation of organic dyes. The as-prepared samples were characterized by X-ray diffraction(XRD), transmi...Zr4+ doped Bi2WO6 was prepared by a fast microwave-assisted hydrothermal method and used for photocatalytic degradation of organic dyes. The as-prepared samples were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-Vis spectroscopy. The results indicate that cell volume of Bi2WO6 has a slight increase dependent on the substitution of W6+ by Zr4+ with increasing the Zr doping amount. The photocatalytic performance of Zr4+ doped Bi2WO6 was evaluated by the photodegradation of MO under visible light irradiation. Compared with samples obtained with traditional hydrothermal method as well as pure Bi2WO6, an obviously improved photocatalytic efficiency of Zr4+ doped Bi2WO6 is achieved by this microwave-assisted hydrothermal way. The 3% Zr doped Bi2WO6 sample exhibited the best photocatalytic activity, which is probably because of the appropriate proportion of components and optimum amount of oxygen vacancies of the sample.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p...The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.展开更多
Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimen...Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.展开更多
The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined co...The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),and cyclic simple shear,are conducted.Cyclic simple shear experiments on LCCs were performed to evaluate the damping and shear modulus.The investigated factors are vertical load(VL),leachate content(LC),frequency(F),and shear strain(ShS)for LCC.Forensic-based investigation optimization(FBIO)and equilibrium optimizer algorithm(EOA)were utilized in addition to multiple types of ensemble models,including adaptive boosting(ADB),gradient boosting regression tree(GBRT),extreme gradient boosting(XGB) and random forest(RF).The comparison of the methods showed that GBRT-FBIO and XGB-EOA models outperformed other models for shear modulus and damping of LCC.The p-value less than 0.0001 shows the significance of the used models in the response surface methodology(RSM)method.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity ...BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.展开更多
BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized...BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized by a breach in the gastric wall due to ulceration.Surgical intervention is essential for managing this life-threatening complication.However,the optimal surgical technique remains debatable among clinicians.Various methods have been employed,including simple closure,omental patch repair,and partial gastrectomy,each with distinct advantages and disadvantages.Understanding the comparative efficacy and postoperative outcomes of these techniques is crucial for improving patient care and surgical decision-making.This study addresses the need for a comprehensive analysis in this area.AIM To compare the efficacy and postoperative complications of different surgical methods for the treatment of gastric ulcer perforation.METHODS A retrospective analysis was conducted on 120 patients who underwent surgery for gastric ulcer perforation between September 2020 and June 2023.The patients were divided into three groups based on the surgical method:Simple closure,omental patch repair,and partial gastrectomy.The primary outcomes were the operative success rate and incidence of postoperative complications.Secondary outcomes included the length of hospital stay,recovery time,and long-term quality of life.RESULTS The operative success rates for simple closure,omental patch repair,and partial gastrectomy were 92.5%,95%,and 97.5%,respectively.Postoperative complications occurred in 20%,15%,and 17.5%of patients in each group,respectively.The partial gastrectomy group showed a significantly longer operative time(P<0.001)but the lowest rate of ulcer recurrence(2.5%,P<0.05).The omental patch repair group demonstrated the shortest hospital stay(mean 7.2 days,P<0.05)and fastest recovery time.CONCLUSION While all three surgical methods showed high success rates,omental patch repair demonstrated the best overall outcomes,with a balance of high efficacy,low complication rates,and shorter recovery time.However,the choice of the surgical method should be tailored to individual patient factors and the surgeon’s expertise.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
In order to optimize the microwave-assisted extraction technology of polyphenols from Loropetalum chinense (R. Br.) Oliv., the effects of microwave power, ethanol concentration, solid to liquid ratio and extraction ...In order to optimize the microwave-assisted extraction technology of polyphenols from Loropetalum chinense (R. Br.) Oliv., the effects of microwave power, ethanol concentration, solid to liquid ratio and extraction time on polyphenols extraction rate were investigated. On the basis of single-factor test, a four-factor and three-level orthogonal test was designed by response surface method to establish a mathematical model between the response value and various factors. The results showed that the intensity of effect of different influencing factor on polyphenols ex- traction rate ranked as microwave power's〉solid to liquid ratio's〉extraction time's〉 ethanol concentration's. The optimum microwave-assisted extraction conditions for polyphenols from L. chinense were as follows: extraction power 254 W, ethanol concentration 60%, extraction time 12.5 rain and solid to liquid ratio 1:17. Under the optimum extraction conditions, the extraction rate of polyphenols from L. chinense was 19.17%.展开更多
The property of extraction solution is an important factor influencing the extraction efficiency. In the present work, the effect of the property of solution on extraction of GA was studied, which including the concen...The property of extraction solution is an important factor influencing the extraction efficiency. In the present work, the effect of the property of solution on extraction of GA was studied, which including the concentration of ethanol, ammonia and cation (M+), pH of extraction solution, different kinds of organic solvent etc. The results show that 50%-60%(v/v) ethanol can reach high percentage extraction of GA. If 1% (v/v) ammonia solution was added into 60%(v/v) ethanol, the percentage extraction can be increased from 2.0% to 2.31%. Without ammonia, 50mmol/L [M+] (M+ = K+, NH4+) was added into 60%(v/v) ethanol, percentage extraction of GA can reach about 2.26%. If pH of solution (60% ethanol) was adjust to pH=4.0, it can reach high percentage extraction. If pH of solution (60% ethanol + 50mmol [M+], pH=6.1) was adjust tO PH=4.0, especially M+ is K+ or NH4+, it can reach almost same extraction efficiency as that of 1% ammonia solution + 60% ethanol, and the operation environment can be greatly improved.展开更多
基金partially supported by grants from the Science and Technology Development Fund of Macao(FDCT059/2011/A3)the University of Macao(MYRG085 to Jing Zhao and MYRG201400041 to LSP,respectively)
文摘In this work,a fast and efficient microwave-assisted extraction(MAE) method was developed to extract main bioactive alkaloids from lotus plumue.To optimize MAE conditions,three main factors were selected using univariate approach experiments,and then central composite design(CCD).The optimal extraction conditions were as follows:methanol concentration of 65%,microwave power of 200 W,and extraction time of 260 s.A high performance liquid chromatography–diode array detector(HPLC–DAD) method was established to quantitatively analyze these phytochemicals in different lotus plumule samples and in different part of lotus.Chromatographic separation was carried out on an Agilent Zorbax Extend-C_(18) column(4.6 mm×150 mm,3.5 μm).Gradient elution was applied with the mobile phase constituted with 0.1% triethylamine in water(A)and acetonitrile(B):40%-70% B at 0-8 min,70%-100% B at 8–9 min,100% B for 2 min,and then equilibrated with 40% B for 2 min.
文摘In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were investigated. The experiments were carried out based on a 3-level, 4-variable Box–Behnken design. The amount of zinc was considered as a function of four independent variables, namely irradiation power, irradiation time, nitric acid concentration, and temperature. The RSM results showed the quadratic polynomial model can be used to describe the relationship between the various factors and the response. Using the ANN analysis, the optimal configuration of the ANN model was found to be 4-10-1. After predicting the model using RSM and ANN, two methodologies were then compared for their predictive capabilities. The results showed that the ANN model is much more accurate in prediction as compared to the RSM.
文摘This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key Research and Development Project(231111230200)。
文摘Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.
基金supported by the National Natural Science Foundation of China (U1303291)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金supported by the National Natural Science Foundation of China(21376113)the Jiangsu Specially Appointed Professor Projectthe Graduate Student Scientific Research Innovation Projects in Jiangsu Province(KYZZ15_0384)~~
文摘A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and linear sweep voltammetry.The cubic TiO2particles were approximately60nm in size and were distributed on the graphene sheets.The Pt nanoparticles were uniformly distributed between the TiO2particles and the graphene sheet.The catalyst exhibited a significant improvement in activity and stability towards the oxygen reduction reaction compared with Pt/C,which resulted from the high electronic conductivity of graphene and strong metal‐support interactions.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20241529)China Postdoctoral Science Foundation(No.2024M750736)。
文摘This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.
基金Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholar State Education Ministry (Grant No.415409) and the Scien-tific Research Foundation for Doctors, Guangdong Natural Science Foundation (Grant No.974078).
文摘A new and simple microwave-assisted alkaline degradation (MAAD) method for the elimination of organoehlorine-pesticide interference on the determination of polychlorinated biphenyls (PCBs) in soil by GC is presented. Under the optimal conditions, the interference of α- HCH, β- HCH, γ -HCH,δ -HCH, o. p' - DDT, p. p' - DDD and p. p' - DDT could be eliminated completely, and p. p' - DDE, Aldrin and Dieldrin could be partially eliminated; however, Dieldrin could be completely eliminated by using concentrated sulphurie acid. The method was evaluated by analyzing the spiked-soil sample. The mean recovery obtained was 84. 1% and the Relative Standard Deviation (RSD) was 2. 7%. Experimental results also indicate that the degradation of the interference and the extraction of the target analytes, PCBs, could be carried out simuhaneously. Compared with the traditional methods, the MAAD method is a rapid, efficient and solvent-saving method,
基金supported by the China Postdoctoral Science Foundation(2014M550337)Natural Science Foundation of High Education School of Anhui Province(KJ2013A091)+1 种基金Science and Technology Project of Anhui Province(1604a0802122)Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics,Chinese Academy of Sciences
文摘Zr4+ doped Bi2WO6 was prepared by a fast microwave-assisted hydrothermal method and used for photocatalytic degradation of organic dyes. The as-prepared samples were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-Vis spectroscopy. The results indicate that cell volume of Bi2WO6 has a slight increase dependent on the substitution of W6+ by Zr4+ with increasing the Zr doping amount. The photocatalytic performance of Zr4+ doped Bi2WO6 was evaluated by the photodegradation of MO under visible light irradiation. Compared with samples obtained with traditional hydrothermal method as well as pure Bi2WO6, an obviously improved photocatalytic efficiency of Zr4+ doped Bi2WO6 is achieved by this microwave-assisted hydrothermal way. The 3% Zr doped Bi2WO6 sample exhibited the best photocatalytic activity, which is probably because of the appropriate proportion of components and optimum amount of oxygen vacancies of the sample.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
基金funded by the Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province,Grant Number 22KJD470002.
文摘The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.
基金supported by grants from the National Natural Science Foundation of China(Nos.12172159 and 12362019).
文摘Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.
文摘The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),and cyclic simple shear,are conducted.Cyclic simple shear experiments on LCCs were performed to evaluate the damping and shear modulus.The investigated factors are vertical load(VL),leachate content(LC),frequency(F),and shear strain(ShS)for LCC.Forensic-based investigation optimization(FBIO)and equilibrium optimizer algorithm(EOA)were utilized in addition to multiple types of ensemble models,including adaptive boosting(ADB),gradient boosting regression tree(GBRT),extreme gradient boosting(XGB) and random forest(RF).The comparison of the methods showed that GBRT-FBIO and XGB-EOA models outperformed other models for shear modulus and damping of LCC.The p-value less than 0.0001 shows the significance of the used models in the response surface methodology(RSM)method.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.
文摘BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized by a breach in the gastric wall due to ulceration.Surgical intervention is essential for managing this life-threatening complication.However,the optimal surgical technique remains debatable among clinicians.Various methods have been employed,including simple closure,omental patch repair,and partial gastrectomy,each with distinct advantages and disadvantages.Understanding the comparative efficacy and postoperative outcomes of these techniques is crucial for improving patient care and surgical decision-making.This study addresses the need for a comprehensive analysis in this area.AIM To compare the efficacy and postoperative complications of different surgical methods for the treatment of gastric ulcer perforation.METHODS A retrospective analysis was conducted on 120 patients who underwent surgery for gastric ulcer perforation between September 2020 and June 2023.The patients were divided into three groups based on the surgical method:Simple closure,omental patch repair,and partial gastrectomy.The primary outcomes were the operative success rate and incidence of postoperative complications.Secondary outcomes included the length of hospital stay,recovery time,and long-term quality of life.RESULTS The operative success rates for simple closure,omental patch repair,and partial gastrectomy were 92.5%,95%,and 97.5%,respectively.Postoperative complications occurred in 20%,15%,and 17.5%of patients in each group,respectively.The partial gastrectomy group showed a significantly longer operative time(P<0.001)but the lowest rate of ulcer recurrence(2.5%,P<0.05).The omental patch repair group demonstrated the shortest hospital stay(mean 7.2 days,P<0.05)and fastest recovery time.CONCLUSION While all three surgical methods showed high success rates,omental patch repair demonstrated the best overall outcomes,with a balance of high efficacy,low complication rates,and shorter recovery time.However,the choice of the surgical method should be tailored to individual patient factors and the surgeon’s expertise.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金Supported by Open Funds for Innovation Platforms of Colleges and Universities in Hunan Province(15K066)National College Students'Innovative Entrepreneuria Training Program(201510553003)Research Study and Innovative Experiment Plan Project for College Students in Hunan Province(2015-499)~~
文摘In order to optimize the microwave-assisted extraction technology of polyphenols from Loropetalum chinense (R. Br.) Oliv., the effects of microwave power, ethanol concentration, solid to liquid ratio and extraction time on polyphenols extraction rate were investigated. On the basis of single-factor test, a four-factor and three-level orthogonal test was designed by response surface method to establish a mathematical model between the response value and various factors. The results showed that the intensity of effect of different influencing factor on polyphenols ex- traction rate ranked as microwave power's〉solid to liquid ratio's〉extraction time's〉 ethanol concentration's. The optimum microwave-assisted extraction conditions for polyphenols from L. chinense were as follows: extraction power 254 W, ethanol concentration 60%, extraction time 12.5 rain and solid to liquid ratio 1:17. Under the optimum extraction conditions, the extraction rate of polyphenols from L. chinense was 19.17%.
基金Supported by the National Natural Science Foundation of China(No.29836130).
文摘The property of extraction solution is an important factor influencing the extraction efficiency. In the present work, the effect of the property of solution on extraction of GA was studied, which including the concentration of ethanol, ammonia and cation (M+), pH of extraction solution, different kinds of organic solvent etc. The results show that 50%-60%(v/v) ethanol can reach high percentage extraction of GA. If 1% (v/v) ammonia solution was added into 60%(v/v) ethanol, the percentage extraction can be increased from 2.0% to 2.31%. Without ammonia, 50mmol/L [M+] (M+ = K+, NH4+) was added into 60%(v/v) ethanol, percentage extraction of GA can reach about 2.26%. If pH of solution (60% ethanol) was adjust to pH=4.0, it can reach high percentage extraction. If pH of solution (60% ethanol + 50mmol [M+], pH=6.1) was adjust tO PH=4.0, especially M+ is K+ or NH4+, it can reach almost same extraction efficiency as that of 1% ammonia solution + 60% ethanol, and the operation environment can be greatly improved.