Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin...Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped c...Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped carbon sources for the preparation of S-doped GQDs. The effects of coal properties on coal-based GQDs were analyzed by means of high-resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), ultraviolet-visible(UV-Vis) absorption spectroscopy, and fluorescence emission spectra. It was shown that all coal samples can be used to prepare GQDs, which emit bluegreen and blue fluorescence under ultraviolet light. Anthracite-based GQDs have a hexagonal crystal structure without defects, the largest size, and densely arranged carbon rings in their lamellae; the highrank bituminous coal-based GQDs are relatively reduced in size, with their hexagonal crystal structure being only faintly visible; the low-rank bituminous coal-based GQDs are the smallest, with sparse lattice fringes and visible internal defects. As the metamorphism of raw coals increases, the yield decreases and the fluorescence quantum yield(QY) initially increases and then decreases. Additionally, the surface of GQDs that were prepared using high-rank SHOS coal(high-rank bituminous coal) preserves rich sulfur content even after strong oxidation, which effectively adjusts the bandgap and improves the fluorescence QY. Thus, high-rank bituminous coal with SHOS content can be used as a natural S-doped carbon source to prepare S-doped GQDs, extending the clean utilization of low-grade coal.展开更多
Based on the problems caused by many oxygen-containing functional groups and poor floatability on the surface of low rank coal,the characteristics of low rank coal were analyzed systematically by means of scanning ele...Based on the problems caused by many oxygen-containing functional groups and poor floatability on the surface of low rank coal,the characteristics of low rank coal were analyzed systematically by means of scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-Ray photoelectron spectroscopy(XPS)techniques.The bubble-particle induction time was used to determine the characterization of the bubble-particle attachment,and the bubble-particle attachment of low rank coal modified by soaking the coal samples in an acid or alkaline solution was analyzed.The floatability of the modified coal surface was verified by flotation tests.The results show that the particle size of 0.125–0.074 mm of the coal sample exhibited better bubble-particle attachment characteristics.The small bubble,the larger approach velocity of bubble and the larger bubble deformation were more helpful to enhance the bubbleparticle attachment.For an acid solution,the smaller the p H was and the longer the soaking time was,the better the floatability of the coal sample and the higher the combustible material recovery were.The combustible material recovery of low rank coal was increased to 78.79%by soaking the sample in an acid solution of pH=0 for 180 min.On the contrary there was a best concentration for the alkaline solution.展开更多
For the thorough research on coal metamorphism impact on gas adsorption capacity, this paper collected and summarized parameters of experimental adsorption isotherms, coal maceral, proximate analysis and ultimate anal...For the thorough research on coal metamorphism impact on gas adsorption capacity, this paper collected and summarized parameters of experimental adsorption isotherms, coal maceral, proximate analysis and ultimate analysis obtained from National Engineering Research Center of Coal Gas Control and related literatures at home and abroad, systematically discussed the coal rank effect on its physicochemical properties and methane adsorption capacity, in which the coal rank was shown in Vitrinite reflectance, furthermore, obtained the Semi-quantitative relationship between physicochemical properties of coal and methane adsorption capacity.展开更多
By means of in situ diffuse reflectance FTIR, the IR spectra of 6 coals with different ranks were obtained from room temperature to 230 ℃. A new curve fitting method was used to recognize the different hydrogen ...By means of in situ diffuse reflectance FTIR, the IR spectra of 6 coals with different ranks were obtained from room temperature to 230 ℃. A new curve fitting method was used to recognize the different hydrogen bonds in the coals, and the influence of coal ranks on the distribution of hydrogen bonds(HBs) in the coals and their thermal stability were discussed. The results show that there is another new HB(around 2514 cm -1 ) between the -SH in mercaptans or thiophenols and the nitrogen in the pyridine like compounds in the coals, and the evidence for that was provided. The controversial band of the HB between hydroxyl and the nitrogen of the pyridine like compounds was determined in the range of 3028-2984 cm -1 , and the result is consistent with but more specific than that of Painter et al .. It was found that the stability of different HBs in the coals is influenced by both coal rank and temperature. For some HBs, the higher the coal rank, the higher the stability of them. Within the temperature range of our research, the stability of the HB between the hydroxyl and the π bond increases to some extent for some coals at temperatures higher than 110 or 140 ℃.展开更多
Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthraci...Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthracite from Ningxia Hui Auto- nomous Region. Fe3O4 was used as a magnetic additive. A nitrogen-adsorption analyzer was used to determine the specific surface area and pore structure of the resulting activated carbons. The adsorption capacity was assessed by the adsorption of iodine and methylene blue. X-ray diffraction was used to measure the evolution behavior of Fe304 during the preparation process. Magnetic properties were characterized with a vibrating-sample magnetometer. The effect of the activation temperature on the performance of CMAC's was also studied. The results show that, compared to Baorigele lignite and Taixi anthracite, the Datong bitumite is more appropriate for the preparation of CMAC's with a high specific surface area, an advanced pore structure and suitable magnetic properties. Fe304 can effectively enhance the magnetic properties and control the pore structure by increasing the ratio of meso- pores. An addition of 6.0% Fe304 and an activation temperature of 880 ℃ produced a CMAC having a specific surface area, an iodine adsorption, a methylene blue adsorption and a specific saturation magnetization of 1152.0 m2/g, 1216.7 mg/g, 229.5 mg/g and 4.623 emu/g, respectively. The coal used to prepare this specimen was Datong bitumite.展开更多
A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis...A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis temperature 750℃. Then these chars were characterized by means of thermogravimetric analysis and Fourier transform infrared spectrometer with the aim to investigate the influence of heating rate in pyrolysis process on gasification reactivity and surface chemistry of them. Besides, a homogeneous model was used to quantitatively analyze the activation energy of gasification reaction. The results reveal that Shengli lignite and its derived chars behave higher gasification reactivity and have less content of oxygen functional groups than Shenmu coal and chars. Meanwhile, chars derived from Shengli lignite at 50℃/min and Shenmu coal at 200℃/min have the greatest gasification reactivity, respectively. The oxygen functional groups in Shengli lignite are easily thermo-decomposed, and they are less affected by the heating rate, while that in Shenmu coal have a significant change with the variation of heating rate. In addition, there is no good correlation between the change of oxygen functional groups and that of the gasification reactivity of the derived chars from pyrolysis at different heating rates.展开更多
In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the eff...In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM.展开更多
The pretreatment of low rank coal with nitric acid oxidation can promote its bio-liquefaction. However, the detailed mechanism of which remains an unresolved problem. In the present work, the characteristics of Fushun...The pretreatment of low rank coal with nitric acid oxidation can promote its bio-liquefaction. However, the detailed mechanism of which remains an unresolved problem. In the present work, the characteristics of Fushun coal before and after oxidation by nitric acid were investigated combined with elemental composition, pore volume and pore size, Zeta potential, FT-IR, and 13C solid NMR spectrum analysis. The results show that the inorganic substance inlaid in coal are dissolved by ni- tric acid, which results in the decrease of coal ash content and increase of pore volume and pore size. Furthermore, there exist obvious chemical reactions between nitric acid and the functional groups of coal including aromatic ring carboxylation, side chain alkyl of aromatic ring oxidation and aromatic ring nitration. Among these reactions, some led to the increase in content of carboxyl, aliphatic carbon connected with O and humic acid carbon, while others caused the reduction of aromaticity, methyl carbon, substituted aryl carbon and side chain.展开更多
Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specific...Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.展开更多
The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)wer...The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone(NMP)under mild conditions.The structures of the HPCs and residues were characterized by proximate and ultimate analysis,Raman spectra,and Fourier transform infrared(FT-IR)spectra.The carbon structure changes within the raw coals and HPCs were discussed.The individual thermal dissolution of Xibu(XB)coal,Guandi(GD)coal,and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280℃,and the ash content of three HPCs decreased as the extraction temperature rose.Co-thermal extractions in NMP at various coal/biomass mass ratios were performed,demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios.The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass.The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4.The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.展开更多
To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer a...To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.展开更多
Low-rank coal contains more inherent moisture, high alkali metals (Na, K, Ca), high oxygen content, and low sulfur than high-rank coal. Low-rank coal gasification usually has lower efficiency than high-rank coal, sinc...Low-rank coal contains more inherent moisture, high alkali metals (Na, K, Ca), high oxygen content, and low sulfur than high-rank coal. Low-rank coal gasification usually has lower efficiency than high-rank coal, since more energy has been used to drive out the moisture and volatile matters and vaporize them. Nevertheless, Low-rank coal comprises about half of both the current utilization and the reserves in the United States and is the largest energy resource in the United States, so it is worthwhile and important to investigate the low-rank coal gasification process. In this study, the two-stage fuel feeding scheme is investigated in a downdraft, entrained-flow, and refractory-lined reactor. Both a high-rank coal (Illinois No.6 bituminous) and a low-rank coal (South Hallsville Texas Lignite) are used for comparison under the following operating conditions: 1) low-rank coal vs. high-rank coal, 2) one-stage injection vs. two-stage injection, 3) low-rank coal with pre-drying vs. without pre-drying, and 4) dry coal feeding without steam injection vs. with steam injection at the second stage. The results show that 1) With predrying to 12% moisture, syngas produced from lignite has 538 K lower exit temperature and 18% greater Higher Heating Value (HHV) than syngas produced from Illinois #6. 2) The two-stage fuel feeding scheme results in a lower wall temperature (around 100 K) in the lower half of the gasifier than the single-stage injection scheme. 3) Without pre-drying, the high inherent moisture content in the lignite causes the syngas HHV to decrease by 27% and the mole fractions of both H2 and CO to decrease by 33%, while the water vapor content increases by 121% (by volume). The low-rank coal, without pre-drying, will take longer to finish the demoisturization and devolatilization processes, resulting in delayed combustion and gasification processes.展开更多
Coal swelling in the presence of water as well as CO2 is a well-known phenomenon, and these may affect the permeability of coal. Quantifying swelling effects is becoming an important issue to verify the suitability of...Coal swelling in the presence of water as well as CO2 is a well-known phenomenon, and these may affect the permeability of coal. Quantifying swelling effects is becoming an important issue to verify the suitability of particular coal seams for CO2-enhanced coal bed methane recovery projects. In this report, coal swelling experiments using a visualization method in the CO2 supercritical conditions were conducted on crushed coal samples. The measurement apparatus was designed specifically for the present swelling experiment using a visualization method. Crushed coal samples were used instead of block coal samples to shorten equilibrium time and to solve the problem of limited availability of core coal samples. Dry and wet coal samples were used in the experiments because there is relatively limited information about how the swelling of coal by CO2 is affected by water saturation. Moreover, some coal seams are saturated with water in initial reservoir conditions. The maximum volumetric swelling was around 3% at 10 MPa for dry samples and almost half that at the same pressure for wet samples. The wet samples showed lower volumetric swelling than dry ones because the wet coal samples were already swollen by water. Experimental results obtained for swelling were comparable with other reports. Our visualization method using crushed samples has advantages in terms of sample preparation and experimental execution compared with the other methods used to measure coal swelling using block samples.展开更多
The low rank coalbed methane (CBM) has great potential for exploration and development in China, but its exploitation level is low at present stage. The pores are the storage space of CBM, so recognizing its structura...The low rank coalbed methane (CBM) has great potential for exploration and development in China, but its exploitation level is low at present stage. The pores are the storage space of CBM, so recognizing its structural characteristics has very important practical significance for the development of CBM. The samples of No. 4 and upper No. 4 coalbed in Dafosi were selected to carry out the analysis of mercury injection test, nitrogen adsorption test and scanning electron microscopy to study the different lithotypes of the pore structure, pore throat distribution and fracture character of low rank coal reservoir. The results showed that micropore of low rank coal in Dafosi relatively developed and the pore volume of vitrain was equivalent to durain. The pore throat of durain was larger than vitrain, the connectivity was better and the fissures were more developed. The percolation capacity and reservoir performance of upper No. 4 coal was better than No. 4 coal. Generally, the potential of exploration and development of upper No. 4 coal in the study area was better than that of No. 4, and the developed area of durain was more beneficial for the development of CBM.展开更多
The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,re...The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,respectively,after analyzing the proximate element and maceral of coal samples,which was aimed to study the CO adsorptive capa- bility of every maceral of low rank coal at difference temperature and pressure.The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50℃),and the tem- perature effect on coal adsorption is greater than of pressure in lower temperature and pressure area;what's more,the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50℃),it can be described by Henry equation(Q=KP),which increases with pressure.Both temperature and pressure has great influence on CO adsorptive capability of low rank coals,especially the temperature's effect is so very complex that the mechanism need to study further.At the same time,the volatile matter,inertinite,oxygen-function groups and negative functional groups are high popu- larly in low rank coal samples,especially,the content of hydroxide(-OH) has great influ- ence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples,the result is same to the research on CH4 adsorption.展开更多
Based on analysis on X-ray diffraction, the metamorphic grade of coal in southeast Qinshui Basin was discussed, and a precise evaluation of coal rank through XRD analysis was made, in addition, the correlation of coal...Based on analysis on X-ray diffraction, the metamorphic grade of coal in southeast Qinshui Basin was discussed, and a precise evaluation of coal rank through XRD analysis was made, in addition, the correlation of coal rank and vitrinite reflectance (Ro) was compared. XRD spectra of coal shows (002)-band and γ-band, and based on fitting calculation and multi-peak separation methods, the values of 2θ002 and 2θγ can be obtained, as well as corresponding intensities I002 and Iγ, consequently the coal rank can be quantized as the ratio of I002 and Iγ, that is coal rank=I002/Iγ. The research shows that the values of θ002 and θγ increase with the metamorphic grade, and a very good linear positive correlation exists between calculated Coal Rank and Ro.展开更多
Coal pyrolysis gas from different ranks of coal was monitored on real time basis using photoionization mass spectroscopy. The molecular weight distribution of different products as a function of temperature from vario...Coal pyrolysis gas from different ranks of coal was monitored on real time basis using photoionization mass spectroscopy. The molecular weight distribution of different products as a function of temperature from various coal ranks studied was observed. It was noted that the release of different classes of compounds like phenols, alkenes, alkylated aromatics and aromatic skeletons was temperature dependent. For all the coal ranks at lower temperatures phenols were the main component, with alkenes and alkylated aromatics at slight higher temperatures and aromatic skeletons were released at the highest temperatures studied.展开更多
The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those medi...The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those media was discussed, and the seepage flow characteristics of methane-water medium in coals were analyzed. The result shows that the coalbed methane resource of high-rank coal reservoirs in China is still recoverable.展开更多
基金The first author would like to express sincere appreciation for the scholarship provided by China Scholarship Council(No.202006430006)and University of Wollongongfinancially supported by the ACARP Project C28006+1 种基金the National Key Research and Development Program of China(No.2018YFC0808301)the Natural Science Foundation of Beijing Municipality,China(No.8192036)。
文摘Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金supported by the National Natural Science Foundation of China (grant No. 41172146)National Key Basic Research Program of China (grant No. 2014CB238905)
文摘Coal-based graphene quantum dots(GQDs) were successfully produced via a one-step chemical synthesis from six different coal ranks, from which two superhigh organic sulfur(SHOS) coals were selected as natural S-doped carbon sources for the preparation of S-doped GQDs. The effects of coal properties on coal-based GQDs were analyzed by means of high-resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), ultraviolet-visible(UV-Vis) absorption spectroscopy, and fluorescence emission spectra. It was shown that all coal samples can be used to prepare GQDs, which emit bluegreen and blue fluorescence under ultraviolet light. Anthracite-based GQDs have a hexagonal crystal structure without defects, the largest size, and densely arranged carbon rings in their lamellae; the highrank bituminous coal-based GQDs are relatively reduced in size, with their hexagonal crystal structure being only faintly visible; the low-rank bituminous coal-based GQDs are the smallest, with sparse lattice fringes and visible internal defects. As the metamorphism of raw coals increases, the yield decreases and the fluorescence quantum yield(QY) initially increases and then decreases. Additionally, the surface of GQDs that were prepared using high-rank SHOS coal(high-rank bituminous coal) preserves rich sulfur content even after strong oxidation, which effectively adjusts the bandgap and improves the fluorescence QY. Thus, high-rank bituminous coal with SHOS content can be used as a natural S-doped carbon source to prepare S-doped GQDs, extending the clean utilization of low-grade coal.
基金financially supported by the National Key R&D Program of China(No.2018YFC0604702)the National Natural Science Foundation of China(No.51774284).
文摘Based on the problems caused by many oxygen-containing functional groups and poor floatability on the surface of low rank coal,the characteristics of low rank coal were analyzed systematically by means of scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-Ray photoelectron spectroscopy(XPS)techniques.The bubble-particle induction time was used to determine the characterization of the bubble-particle attachment,and the bubble-particle attachment of low rank coal modified by soaking the coal samples in an acid or alkaline solution was analyzed.The floatability of the modified coal surface was verified by flotation tests.The results show that the particle size of 0.125–0.074 mm of the coal sample exhibited better bubble-particle attachment characteristics.The small bubble,the larger approach velocity of bubble and the larger bubble deformation were more helpful to enhance the bubbleparticle attachment.For an acid solution,the smaller the p H was and the longer the soaking time was,the better the floatability of the coal sample and the higher the combustible material recovery were.The combustible material recovery of low rank coal was increased to 78.79%by soaking the sample in an acid solution of pH=0 for 180 min.On the contrary there was a best concentration for the alkaline solution.
文摘For the thorough research on coal metamorphism impact on gas adsorption capacity, this paper collected and summarized parameters of experimental adsorption isotherms, coal maceral, proximate analysis and ultimate analysis obtained from National Engineering Research Center of Coal Gas Control and related literatures at home and abroad, systematically discussed the coal rank effect on its physicochemical properties and methane adsorption capacity, in which the coal rank was shown in Vitrinite reflectance, furthermore, obtained the Semi-quantitative relationship between physicochemical properties of coal and methane adsorption capacity.
基金Supported by the National Natural Science Foundation of China(No.2 990 6 0 12)
文摘By means of in situ diffuse reflectance FTIR, the IR spectra of 6 coals with different ranks were obtained from room temperature to 230 ℃. A new curve fitting method was used to recognize the different hydrogen bonds in the coals, and the influence of coal ranks on the distribution of hydrogen bonds(HBs) in the coals and their thermal stability were discussed. The results show that there is another new HB(around 2514 cm -1 ) between the -SH in mercaptans or thiophenols and the nitrogen in the pyridine like compounds in the coals, and the evidence for that was provided. The controversial band of the HB between hydroxyl and the nitrogen of the pyridine like compounds was determined in the range of 3028-2984 cm -1 , and the result is consistent with but more specific than that of Painter et al .. It was found that the stability of different HBs in the coals is influenced by both coal rank and temperature. For some HBs, the higher the coal rank, the higher the stability of them. Within the temperature range of our research, the stability of the HB between the hydroxyl and the π bond increases to some extent for some coals at temperatures higher than 110 or 140 ℃.
基金supported by the National Natural Science Foundation of China (No20776150)the National High Technology Research and Development Program of China (No2008AA05Z308)
文摘Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthracite from Ningxia Hui Auto- nomous Region. Fe3O4 was used as a magnetic additive. A nitrogen-adsorption analyzer was used to determine the specific surface area and pore structure of the resulting activated carbons. The adsorption capacity was assessed by the adsorption of iodine and methylene blue. X-ray diffraction was used to measure the evolution behavior of Fe304 during the preparation process. Magnetic properties were characterized with a vibrating-sample magnetometer. The effect of the activation temperature on the performance of CMAC's was also studied. The results show that, compared to Baorigele lignite and Taixi anthracite, the Datong bitumite is more appropriate for the preparation of CMAC's with a high specific surface area, an advanced pore structure and suitable magnetic properties. Fe304 can effectively enhance the magnetic properties and control the pore structure by increasing the ratio of meso- pores. An addition of 6.0% Fe304 and an activation temperature of 880 ℃ produced a CMAC having a specific surface area, an iodine adsorption, a methylene blue adsorption and a specific saturation magnetization of 1152.0 m2/g, 1216.7 mg/g, 229.5 mg/g and 4.623 emu/g, respectively. The coal used to prepare this specimen was Datong bitumite.
基金financial support from the Basic Fund for the Scientific Research and Operation of Central Universities of China (No. 2009KH10
文摘A series of char samples were derived from pyrolysis of two typical low-rank coals in China (Shengli lig- nite and Shenmu bituminous coal) at low, medium and fast heating rates, respectively, to the same pyrol- ysis temperature 750℃. Then these chars were characterized by means of thermogravimetric analysis and Fourier transform infrared spectrometer with the aim to investigate the influence of heating rate in pyrolysis process on gasification reactivity and surface chemistry of them. Besides, a homogeneous model was used to quantitatively analyze the activation energy of gasification reaction. The results reveal that Shengli lignite and its derived chars behave higher gasification reactivity and have less content of oxygen functional groups than Shenmu coal and chars. Meanwhile, chars derived from Shengli lignite at 50℃/min and Shenmu coal at 200℃/min have the greatest gasification reactivity, respectively. The oxygen functional groups in Shengli lignite are easily thermo-decomposed, and they are less affected by the heating rate, while that in Shenmu coal have a significant change with the variation of heating rate. In addition, there is no good correlation between the change of oxygen functional groups and that of the gasification reactivity of the derived chars from pyrolysis at different heating rates.
基金Project 2002CB211705 supported by the National Basic Research Program of China
文摘In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM.
基金Supported by the National Natural Science Foundation of China (50874107) the Guizhou Science and Technology Fund (Qiankehe J zi [2012]2306)+1 种基金 the Guizhou High-level Talent Special Assistant Fund (TZJF-2011-04) the Guizhou Research Laboratory Platform of Clean and Efficient Use of Coal Resources (Qianke Platform [2011] 4003)
文摘The pretreatment of low rank coal with nitric acid oxidation can promote its bio-liquefaction. However, the detailed mechanism of which remains an unresolved problem. In the present work, the characteristics of Fushun coal before and after oxidation by nitric acid were investigated combined with elemental composition, pore volume and pore size, Zeta potential, FT-IR, and 13C solid NMR spectrum analysis. The results show that the inorganic substance inlaid in coal are dissolved by ni- tric acid, which results in the decrease of coal ash content and increase of pore volume and pore size. Furthermore, there exist obvious chemical reactions between nitric acid and the functional groups of coal including aromatic ring carboxylation, side chain alkyl of aromatic ring oxidation and aromatic ring nitration. Among these reactions, some led to the increase in content of carboxyl, aliphatic carbon connected with O and humic acid carbon, while others caused the reduction of aromaticity, methyl carbon, substituted aryl carbon and side chain.
基金supported by the National Natural Science Foundation of China(No.41302131)the Special Fund for Fostering Major Projects at the China University of Mining and Technology(No.2014ZDP03)the Fundamental Research Funds for the Central Universities(No.2012QNB32)
文摘Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.
基金financially supported by the National Natural Science Foundation of China (No. 51574023)
文摘The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone(NMP)under mild conditions.The structures of the HPCs and residues were characterized by proximate and ultimate analysis,Raman spectra,and Fourier transform infrared(FT-IR)spectra.The carbon structure changes within the raw coals and HPCs were discussed.The individual thermal dissolution of Xibu(XB)coal,Guandi(GD)coal,and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280℃,and the ash content of three HPCs decreased as the extraction temperature rose.Co-thermal extractions in NMP at various coal/biomass mass ratios were performed,demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios.The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass.The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4.The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.
基金Supported by National High-tech Research and Development Program of China(2011AA05A2021)the National Natural Science Foundation of China(21536009)Science and Technology Plan Projects of Shaanxi Province(2017ZDCXL-GY-10-03).
文摘To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.
文摘Low-rank coal contains more inherent moisture, high alkali metals (Na, K, Ca), high oxygen content, and low sulfur than high-rank coal. Low-rank coal gasification usually has lower efficiency than high-rank coal, since more energy has been used to drive out the moisture and volatile matters and vaporize them. Nevertheless, Low-rank coal comprises about half of both the current utilization and the reserves in the United States and is the largest energy resource in the United States, so it is worthwhile and important to investigate the low-rank coal gasification process. In this study, the two-stage fuel feeding scheme is investigated in a downdraft, entrained-flow, and refractory-lined reactor. Both a high-rank coal (Illinois No.6 bituminous) and a low-rank coal (South Hallsville Texas Lignite) are used for comparison under the following operating conditions: 1) low-rank coal vs. high-rank coal, 2) one-stage injection vs. two-stage injection, 3) low-rank coal with pre-drying vs. without pre-drying, and 4) dry coal feeding without steam injection vs. with steam injection at the second stage. The results show that 1) With predrying to 12% moisture, syngas produced from lignite has 538 K lower exit temperature and 18% greater Higher Heating Value (HHV) than syngas produced from Illinois #6. 2) The two-stage fuel feeding scheme results in a lower wall temperature (around 100 K) in the lower half of the gasifier than the single-stage injection scheme. 3) Without pre-drying, the high inherent moisture content in the lignite causes the syngas HHV to decrease by 27% and the mole fractions of both H2 and CO to decrease by 33%, while the water vapor content increases by 121% (by volume). The low-rank coal, without pre-drying, will take longer to finish the demoisturization and devolatilization processes, resulting in delayed combustion and gasification processes.
文摘Coal swelling in the presence of water as well as CO2 is a well-known phenomenon, and these may affect the permeability of coal. Quantifying swelling effects is becoming an important issue to verify the suitability of particular coal seams for CO2-enhanced coal bed methane recovery projects. In this report, coal swelling experiments using a visualization method in the CO2 supercritical conditions were conducted on crushed coal samples. The measurement apparatus was designed specifically for the present swelling experiment using a visualization method. Crushed coal samples were used instead of block coal samples to shorten equilibrium time and to solve the problem of limited availability of core coal samples. Dry and wet coal samples were used in the experiments because there is relatively limited information about how the swelling of coal by CO2 is affected by water saturation. Moreover, some coal seams are saturated with water in initial reservoir conditions. The maximum volumetric swelling was around 3% at 10 MPa for dry samples and almost half that at the same pressure for wet samples. The wet samples showed lower volumetric swelling than dry ones because the wet coal samples were already swollen by water. Experimental results obtained for swelling were comparable with other reports. Our visualization method using crushed samples has advantages in terms of sample preparation and experimental execution compared with the other methods used to measure coal swelling using block samples.
文摘The low rank coalbed methane (CBM) has great potential for exploration and development in China, but its exploitation level is low at present stage. The pores are the storage space of CBM, so recognizing its structural characteristics has very important practical significance for the development of CBM. The samples of No. 4 and upper No. 4 coalbed in Dafosi were selected to carry out the analysis of mercury injection test, nitrogen adsorption test and scanning electron microscopy to study the different lithotypes of the pore structure, pore throat distribution and fracture character of low rank coal reservoir. The results showed that micropore of low rank coal in Dafosi relatively developed and the pore volume of vitrain was equivalent to durain. The pore throat of durain was larger than vitrain, the connectivity was better and the fissures were more developed. The percolation capacity and reservoir performance of upper No. 4 coal was better than No. 4 coal. Generally, the potential of exploration and development of upper No. 4 coal in the study area was better than that of No. 4, and the developed area of durain was more beneficial for the development of CBM.
基金the National Natural Science Foundation of China(50474080)Educational Department Foundation for Returnee
文摘The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,respectively,after analyzing the proximate element and maceral of coal samples,which was aimed to study the CO adsorptive capa- bility of every maceral of low rank coal at difference temperature and pressure.The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50℃),and the tem- perature effect on coal adsorption is greater than of pressure in lower temperature and pressure area;what's more,the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50℃),it can be described by Henry equation(Q=KP),which increases with pressure.Both temperature and pressure has great influence on CO adsorptive capability of low rank coals,especially the temperature's effect is so very complex that the mechanism need to study further.At the same time,the volatile matter,inertinite,oxygen-function groups and negative functional groups are high popu- larly in low rank coal samples,especially,the content of hydroxide(-OH) has great influ- ence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples,the result is same to the research on CH4 adsorption.
基金Supported by the National Natural Science Foundation of China (40972106) the Major Projects of the National Science and Technology of China (2011ZX05042-001-002) the Central Universities Fundamental Research Special Foundation of China (292011266)
文摘Based on analysis on X-ray diffraction, the metamorphic grade of coal in southeast Qinshui Basin was discussed, and a precise evaluation of coal rank through XRD analysis was made, in addition, the correlation of coal rank and vitrinite reflectance (Ro) was compared. XRD spectra of coal shows (002)-band and γ-band, and based on fitting calculation and multi-peak separation methods, the values of 2θ002 and 2θγ can be obtained, as well as corresponding intensities I002 and Iγ, consequently the coal rank can be quantized as the ratio of I002 and Iγ, that is coal rank=I002/Iγ. The research shows that the values of θ002 and θγ increase with the metamorphic grade, and a very good linear positive correlation exists between calculated Coal Rank and Ro.
文摘Coal pyrolysis gas from different ranks of coal was monitored on real time basis using photoionization mass spectroscopy. The molecular weight distribution of different products as a function of temperature from various coal ranks studied was observed. It was noted that the release of different classes of compounds like phenols, alkenes, alkylated aromatics and aromatic skeletons was temperature dependent. For all the coal ranks at lower temperatures phenols were the main component, with alkenes and alkylated aromatics at slight higher temperatures and aromatic skeletons were released at the highest temperatures studied.
基金National Natural Science Foundation of China(4 0 2 42 0 12 ,5 0 13 40 40 )
文摘The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those media was discussed, and the seepage flow characteristics of methane-water medium in coals were analyzed. The result shows that the coalbed methane resource of high-rank coal reservoirs in China is still recoverable.