大地测量数据往往包含许多不确定性,可能导致所建立的函数模型产生病态,影响参数估计的准确性和可靠性。通过研究边坡变形非线性时变系统的力学原理,利用多项式拟合方法改进原模型,在参数解算过程中,考虑到测量数据的不确定性给解算结...大地测量数据往往包含许多不确定性,可能导致所建立的函数模型产生病态,影响参数估计的准确性和可靠性。通过研究边坡变形非线性时变系统的力学原理,利用多项式拟合方法改进原模型,在参数解算过程中,考虑到测量数据的不确定性给解算结果带来消极影响,通过限制不确定度,利用min-max准则,提高参数解算的准确性,并将预测变形结果与实测边坡位移数据对比。结果表明,带不确定性的平差算法(leastsquare with uncertainty,ULS)与最小二乘平差(least-squares,LS)和整体最小二乘平差(total least-square,TLS)相比,其预测结果更接近实际测量数据,证明了改进的边坡变形非线性时变系统预测变形的有效性。展开更多
文摘大地测量数据往往包含许多不确定性,可能导致所建立的函数模型产生病态,影响参数估计的准确性和可靠性。通过研究边坡变形非线性时变系统的力学原理,利用多项式拟合方法改进原模型,在参数解算过程中,考虑到测量数据的不确定性给解算结果带来消极影响,通过限制不确定度,利用min-max准则,提高参数解算的准确性,并将预测变形结果与实测边坡位移数据对比。结果表明,带不确定性的平差算法(leastsquare with uncertainty,ULS)与最小二乘平差(least-squares,LS)和整体最小二乘平差(total least-square,TLS)相比,其预测结果更接近实际测量数据,证明了改进的边坡变形非线性时变系统预测变形的有效性。