The main objective of this study is to determine the hydrogeochemical specificities of the groundwater of the Angovia mine operating permit, located in the Yaouré mountains in the center-west of Côte d’Ivoi...The main objective of this study is to determine the hydrogeochemical specificities of the groundwater of the Angovia mine operating permit, located in the Yaouré mountains in the center-west of Côte d’Ivoire. To do so, descriptive and multivariate statistical analysis methods with the SOM (Self Organizing Maps) algorithm were applied to the physicochemical parameters of 17 boreholes using the calcite (ISC) and dolomite (ISD) saturation indices. The results obtained have shown that the groundwater in the Angovia mine operating permit area has an average temperature of 27.52°C (long rainy season) and 27.87°C (long dry season) and has an average pH of 7.09 ± 0.35 during the main rainy season and 7.32 ± 0.35 during the main dry season. They are mineralized with an average electrical conductivity of 505.98 ± 302.85 μS/cm during the long rainy season and with 450.33 ± 233.74 μS/cm as average during the long dry season. The main phenomena at the origin of groundwater mineralization are water residence time, oxidation-reduction and surface inflow. The study of the relative age of the water shows that the groundwater in the Angovia mine operating permit area is mainly undersaturated with respect to calcite and dolomite. They are therefore very old in the aquifer with a slow circulation speed during the long rainy season and the long dry season.展开更多
The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is...The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.展开更多
Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise t...Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise the adverse effects of surface displacement, it is vital to monitor and accurately predict them and unravel their mechanisms. In recent years, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) have proven effective in predicting complex problems. However, CNN neglects the dynamic dependency of the input in the temporal dimension, which affects surface displacement features. The Convolutional-LSTM model can dynamically learn the temporal dependency among input features via the feedback connections in the LSTM to improve accurate captures of surface displacement features. This study focused on evaluating the C-LSTM model in predicting surface displacement of underground mines and assessed the predictive capabilities and generalisation strength of using hybridised ANN models. Geodetic and geotechnical data gathered from a Gold Mine in Ghana was used. The three models were tested on experimental data collected at Monitoring Scan Point 3. It was observed from the prediction output that all the methods could provide applicable and practical results. However, using indicators like root mean square error (RMSE) and correlation coefficient (R) in assessing the output of the prediction, the C-LSTM had the best prediction output. This study contributes to the advancement of accurate and efficient prediction of surface displacement of underground mines, ultimately enhancing and assisting safety operations.展开更多
The improvement of microbial characterization has increased the comprehension of microbial population and their ability in the microbiological metal dissolution. Bioleaching processes have been expanded to use microor...The improvement of microbial characterization has increased the comprehension of microbial population and their ability in the microbiological metal dissolution. Bioleaching processes have been expanded to use microorganisms for the recovery of metals from ores and wastes. This study introduces Palca mine tailings pond in Peru which turned into acid mine drainage (AMD). AMD is a source of microbial communities whose microorganisms may support the aqueous extractive metallurgy for metal recovery. Four samples of AMD were collected from different locations and the elemental characterization showed concentrations of metals, such as Cu, Zn, Al, Mn, and Fe. The pH of the samples showed variation between 1.9 - 6.8. Twenty-one microorganisms were isolated and selected according the cell morphology. 16s rRNA gene sequences identified five species of which three belong to the bacterial kingdom and two to the Fungi kingdom. Two of the bacterial species were ferrous ion oxidizing bacteria, identified as Acidithiobacillus ferriphilus and Acidithiobacillus ferridurans;and the other one a ferric ion reducing bacteria identified as Acidiphilium acidophilum. The fungi species identified were Rhodotorula sinensis and Exophiala xenobiotica, a filamentous fungus isolated for the first time from an AMD.展开更多
Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resourc...Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resource nexus approach to investigate and analyze the impact of this transition on energy and water demand and CO2 emissions using three annual material demand scenarios. The results indicate that African mining will consume more energy by 2050, leading to an increase in cumulative demand for energy (from 98 to 14,577 TWh) and water (from 15,013 to 223,000 million m3), as well as CO2 emissions (1318 and 19,561 Gg CO2e). In contrast, only a modest increase in energy demand (207 TWh) will be required by 2050 to achieve the SDGs. Therefore, the African mining industry should reduce its energy consumption and invest more in the renewable energy sector to support the global energy transition.展开更多
This study develops a three-dimensional heterogeneous numerical model to simulate the water inrush process and predict the water yield for mineral exploration in Yangzhuang Iron Mine in Anhui Province. To identify the...This study develops a three-dimensional heterogeneous numerical model to simulate the water inrush process and predict the water yield for mineral exploration in Yangzhuang Iron Mine in Anhui Province. To identify the hydrogeological parameters of the aquifer in the study area, the model was calibrated and validated using the observed heads through the integrated trial-and-error and automated techniques. Also, the sensitivity analysis of the model was performed to evaluate the uncertainty associated with the calibrated model. According to the mine construction plan at different mining levels of-500 m,-600 m, and-700 m, the calibrated model was then applied to predict the water yields dependent on the different mining levels. As indicated by the prediction results, the numerical simulation model can systematically describe the groundwater system in the mining area and determine the source of water inrush in this iron mine. In conclusion, numerical analyses carried out in this study can provide guidance to decision-makers in balancing the iron ore mining and mine dewatering in the future.展开更多
文摘The main objective of this study is to determine the hydrogeochemical specificities of the groundwater of the Angovia mine operating permit, located in the Yaouré mountains in the center-west of Côte d’Ivoire. To do so, descriptive and multivariate statistical analysis methods with the SOM (Self Organizing Maps) algorithm were applied to the physicochemical parameters of 17 boreholes using the calcite (ISC) and dolomite (ISD) saturation indices. The results obtained have shown that the groundwater in the Angovia mine operating permit area has an average temperature of 27.52°C (long rainy season) and 27.87°C (long dry season) and has an average pH of 7.09 ± 0.35 during the main rainy season and 7.32 ± 0.35 during the main dry season. They are mineralized with an average electrical conductivity of 505.98 ± 302.85 μS/cm during the long rainy season and with 450.33 ± 233.74 μS/cm as average during the long dry season. The main phenomena at the origin of groundwater mineralization are water residence time, oxidation-reduction and surface inflow. The study of the relative age of the water shows that the groundwater in the Angovia mine operating permit area is mainly undersaturated with respect to calcite and dolomite. They are therefore very old in the aquifer with a slow circulation speed during the long rainy season and the long dry season.
文摘The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.
文摘Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise the adverse effects of surface displacement, it is vital to monitor and accurately predict them and unravel their mechanisms. In recent years, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) have proven effective in predicting complex problems. However, CNN neglects the dynamic dependency of the input in the temporal dimension, which affects surface displacement features. The Convolutional-LSTM model can dynamically learn the temporal dependency among input features via the feedback connections in the LSTM to improve accurate captures of surface displacement features. This study focused on evaluating the C-LSTM model in predicting surface displacement of underground mines and assessed the predictive capabilities and generalisation strength of using hybridised ANN models. Geodetic and geotechnical data gathered from a Gold Mine in Ghana was used. The three models were tested on experimental data collected at Monitoring Scan Point 3. It was observed from the prediction output that all the methods could provide applicable and practical results. However, using indicators like root mean square error (RMSE) and correlation coefficient (R) in assessing the output of the prediction, the C-LSTM had the best prediction output. This study contributes to the advancement of accurate and efficient prediction of surface displacement of underground mines, ultimately enhancing and assisting safety operations.
文摘The improvement of microbial characterization has increased the comprehension of microbial population and their ability in the microbiological metal dissolution. Bioleaching processes have been expanded to use microorganisms for the recovery of metals from ores and wastes. This study introduces Palca mine tailings pond in Peru which turned into acid mine drainage (AMD). AMD is a source of microbial communities whose microorganisms may support the aqueous extractive metallurgy for metal recovery. Four samples of AMD were collected from different locations and the elemental characterization showed concentrations of metals, such as Cu, Zn, Al, Mn, and Fe. The pH of the samples showed variation between 1.9 - 6.8. Twenty-one microorganisms were isolated and selected according the cell morphology. 16s rRNA gene sequences identified five species of which three belong to the bacterial kingdom and two to the Fungi kingdom. Two of the bacterial species were ferrous ion oxidizing bacteria, identified as Acidithiobacillus ferriphilus and Acidithiobacillus ferridurans;and the other one a ferric ion reducing bacteria identified as Acidiphilium acidophilum. The fungi species identified were Rhodotorula sinensis and Exophiala xenobiotica, a filamentous fungus isolated for the first time from an AMD.
文摘Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resource nexus approach to investigate and analyze the impact of this transition on energy and water demand and CO2 emissions using three annual material demand scenarios. The results indicate that African mining will consume more energy by 2050, leading to an increase in cumulative demand for energy (from 98 to 14,577 TWh) and water (from 15,013 to 223,000 million m3), as well as CO2 emissions (1318 and 19,561 Gg CO2e). In contrast, only a modest increase in energy demand (207 TWh) will be required by 2050 to achieve the SDGs. Therefore, the African mining industry should reduce its energy consumption and invest more in the renewable energy sector to support the global energy transition.
基金financially supported by the National Natural Science Foundation of China(No.41402198 and 41372235)Jiangsu Natural Science Fund-Youth Fund(No.BK20131009)the Fundamental Research Funds for the Central Universities(No.2014B03614)
文摘This study develops a three-dimensional heterogeneous numerical model to simulate the water inrush process and predict the water yield for mineral exploration in Yangzhuang Iron Mine in Anhui Province. To identify the hydrogeological parameters of the aquifer in the study area, the model was calibrated and validated using the observed heads through the integrated trial-and-error and automated techniques. Also, the sensitivity analysis of the model was performed to evaluate the uncertainty associated with the calibrated model. According to the mine construction plan at different mining levels of-500 m,-600 m, and-700 m, the calibrated model was then applied to predict the water yields dependent on the different mining levels. As indicated by the prediction results, the numerical simulation model can systematically describe the groundwater system in the mining area and determine the source of water inrush in this iron mine. In conclusion, numerical analyses carried out in this study can provide guidance to decision-makers in balancing the iron ore mining and mine dewatering in the future.