The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole...The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.展开更多
Gastric cancer(GC)is a major cause of cancer-related mortality worldwide.GC is determined by multiple(epi)genetic and environmental factors;can occur at distinct anatomic positions of the stomach;and displays high het...Gastric cancer(GC)is a major cause of cancer-related mortality worldwide.GC is determined by multiple(epi)genetic and environmental factors;can occur at distinct anatomic positions of the stomach;and displays high heterogeneity,with different cellular origins and diverse histological and molecular features.This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics.In the past decade,great progress has been made in the study of GC,particularly in molecular subtyping,investigation of the immune microenvironment,and defining the evolutionary path and dynamics.Preclinical mouse models,particularly immunocompetent models that mimic the cellular and molecular features of human GC,in combination with organoid culture and clinical studies,have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion,and the development of novel therapeutic strategies.Herein,we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models,emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.展开更多
BACKGROUND Immunotherapy for advanced gastric cancer has attracted widespread attention in recent years.However,the adverse reactions of immunotherapy and its relationship with patient prognosis still need further stu...BACKGROUND Immunotherapy for advanced gastric cancer has attracted widespread attention in recent years.However,the adverse reactions of immunotherapy and its relationship with patient prognosis still need further study.In order to determine the association between adverse reaction factors and prognosis,the aim of this study was to conduct a systematic prognostic analysis.By comprehensively evaluating the clinical data of patients with advanced gastric cancer treated by immunotherapy,a nomogram model will be established to predict the survival status of patients more accurately.AIM To explore the characteristics and predictors of immune-related adverse reactions(irAEs)in advanced gastric cancer patients receiving immunotherapy with programmed death protein-1(PD-1)inhibitors and to analyze the correlation between irAEs and patient prognosis.METHODS A total of 140 patients with advanced gastric cancer who were treated with PD-1 inhibitors in our hospital from June 2021 to October 2023 were selected.Patients were divided into the irAEs group and the non-irAEs group according to whether or not irAEs occurred.Clinical features,manifestations,and prognosis of irAEs in the two groups were collected and analyzed.A multivariate logistic regression model was used to analyze the related factors affecting the occurrence of irAEs,and the prediction model of irAEs was established.The receiver operating characteristic(ROC)curve was used to evaluate the ability of different indicators to predict irAEs.A Kaplan-Meier survival curve was used to analyze the correlation between irAEs and prognosis.The Cox proportional risk model was used to analyze the related factors affecting the prognosis of patients.RESULTS A total of 132 patients were followed up,of whom 63(47.7%)developed irAEs.We looked at the two groups’clinical features and found that the two groups were statistically different in age≥65 years,Ki-67 index,white blood cell count,neutrophil count,and regulatory T cell(Treg)count(all P<0.05).Multivariate logistic regression analysis showed that Treg count was a protective factor affecting irAEs occurrence(P=0.030).The ROC curve indicated that Treg+Ki-67+age(≥65 years)combined could predict irAEs well(area under the curve=0.753,95%confidence interval:0.623-0.848,P=0.001).Results of the Kaplan-Meier survival curve showed that progressionfree survival(PFS)was longer in the irAEs group than in the non-irAEs group(P=0.001).Cox proportional hazard regression analysis suggested that the occurrence of irAEs was an independent factor for PFS(P=0.006).CONCLUSION The number of Treg cells is a separate factor that affects irAEs in advanced gastric cancer patients receiving PD-1 inhibitor immunotherapy.irAEs can affect the patients’PFS and result in longer PFS.Treg+Ki-67+age(≥65 years old)combined can better predict the occurrence of adverse reactions.展开更多
Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,a...Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,and to explore future interventions.Methods The epidemiological,behavioral,and population census data from multiple sources were analyzed to extract inputs for an acquired immunodeficiency syndrome(AIDS)epidemic model(AEM).Baseline curves,derived from historical trends in HIV prevalence,were used,and the AEM was employed to examine future intervention scenarios.Results In 2015,the modeled data suggested an adult HIV prevalence of 0.191%in Sichuan,with an estimated 128,766 people living with HIV/AIDS and 16,983 individuals with newly diagnosed infections.Considering current high-risk behaviors,the model predicts an increase in the adult prevalence to 0.306%by 2025,projecting an estimated 212,168 people living with HIV/AIDS and 16,555 individuals with newly diagnosed infections.Conclusion Heterosexual transmission will likely emerge as the primary mode of AIDS transmission in Sichuan.Furthermore,we anticipate a stabilization in the incidence of AIDS with a concurrent increase in prevalence.Implementing comprehensive intervention measures aimed at high-risk groups could effectively alleviate the spread of AIDS in Sichuan.展开更多
BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune ce...BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.展开更多
Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic ...Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic disorders.However,the role of different genetic backgrounds of mice on immune responses to food allergens upon epicutaneous sensitization is largely unknown.In this study,two strains of mice,i.e.,the BALB/c and C57BL/6 mice,were epicutaneously sensitized with ovalbumin on atopic dermatitis(AD)-like skin lesions,followed by intragastric challenge to induce IgE-mediated food allergy.Allergic outcomes were measured as clinical signs,specific antibodies and cytokines,and immune cell subpopulations,as well as changes in intestinal barrier function and gut microbiota.Results showed that both strains of mice exhibited typical food-allergic symptoms with a Th2-skewed response.The C57BL/6 mice,rather than the BALB/c mice,were fitter for establishing an epicutaneously sensitized model of food allergy since a stronger Th2-biased response and severer disruptions in the intestinal barrier and gut homeostasis were observed.This study provides knowledge for selecting an appropriate mouse model to study food-allergic responses associated with AD-like skin lesions and highlights the role of genetic variations in the immune mechanism underlying pathogenesis of food allergy.展开更多
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient...Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.展开更多
The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whiteno...The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.展开更多
In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochast...In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. .展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and bra...Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and brain parenchyma,has attracted growing attention due to its high mortality and disability rates.Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes.In this review,we summarize the common categories of neurotropic viruses,viral transmission routes in the body,host immune responses,and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection.This review should provide valuable resources and perspectives on how to cope with pandemic infections.展开更多
Idiopathic pulmonary fibrosis(IPF),characterized by aggravated alveolar destruc-tion and fibrotic matrix deposition,tendentiously experiences the stage called acute exacerbation IPF(AE-IPF)and progresses to multiple o...Idiopathic pulmonary fibrosis(IPF),characterized by aggravated alveolar destruc-tion and fibrotic matrix deposition,tendentiously experiences the stage called acute exacerbation IPF(AE-IPF)and progresses to multiple organ damage,especially liver injury.Recent studies have found a variety of immune microenvironment disorders associated with elevated IPF risk and secondary organ injury,whereas current animal models induced with bleomycin(BLM)could not completely reflect the pathologi-cal manifestations of AE-IPF patients in clinic,and the exact underlying mechanisms are not yet fully explored.In the current study,we established an AE-IPF model by tracheal administration of a single dose of BLM and then repeated administrations of lipopolysaccharide in mice.This mouse model successfully recapitulated the clinical features of AE-IPF,including excessive intrapulmonary inflammation and fibrosis and extrapulmonary manifestations,as indicated by significant upregulation of Il6,Tnfa,Il1b,Tgfb,fibronectin,and Col1a1 in both lungs and liver and elevated serum aspartate transaminase and alanine transaminase levels.These effects might be attributed to the regulation of Th17 cells.By sharing this novel murine model,we expect to pro-vide an appropriate experimental platform to investigate the pathogenesis of AE-IPF coupled with liver injury and contribute to the discovery and development of targeted interventions.展开更多
基金National Key Research and Development Program of China(2022YFC2303700,2021YFC2301300)Yunnan Key Research and Development Program(202303AC100026)+2 种基金National Natural Science Foundation of China(82302002,82341069)Yunnan Fundamental Research Project(202201AS070047)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0490000)。
文摘The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0803200 and 2023YFC2505903)National Natural Science Foundation of China(Grant Nos.82003014,31930026,81972876,82150112,92168116,81725014,81822035,and 82222052)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M671231)Fundamental Research Funds for the Central Universities(Grant No.22120240327)。
文摘Gastric cancer(GC)is a major cause of cancer-related mortality worldwide.GC is determined by multiple(epi)genetic and environmental factors;can occur at distinct anatomic positions of the stomach;and displays high heterogeneity,with different cellular origins and diverse histological and molecular features.This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics.In the past decade,great progress has been made in the study of GC,particularly in molecular subtyping,investigation of the immune microenvironment,and defining the evolutionary path and dynamics.Preclinical mouse models,particularly immunocompetent models that mimic the cellular and molecular features of human GC,in combination with organoid culture and clinical studies,have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion,and the development of novel therapeutic strategies.Herein,we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models,emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
基金Our study has been approved by Medical Research Ethics Approval Committee(2023010122HN11C).
文摘BACKGROUND Immunotherapy for advanced gastric cancer has attracted widespread attention in recent years.However,the adverse reactions of immunotherapy and its relationship with patient prognosis still need further study.In order to determine the association between adverse reaction factors and prognosis,the aim of this study was to conduct a systematic prognostic analysis.By comprehensively evaluating the clinical data of patients with advanced gastric cancer treated by immunotherapy,a nomogram model will be established to predict the survival status of patients more accurately.AIM To explore the characteristics and predictors of immune-related adverse reactions(irAEs)in advanced gastric cancer patients receiving immunotherapy with programmed death protein-1(PD-1)inhibitors and to analyze the correlation between irAEs and patient prognosis.METHODS A total of 140 patients with advanced gastric cancer who were treated with PD-1 inhibitors in our hospital from June 2021 to October 2023 were selected.Patients were divided into the irAEs group and the non-irAEs group according to whether or not irAEs occurred.Clinical features,manifestations,and prognosis of irAEs in the two groups were collected and analyzed.A multivariate logistic regression model was used to analyze the related factors affecting the occurrence of irAEs,and the prediction model of irAEs was established.The receiver operating characteristic(ROC)curve was used to evaluate the ability of different indicators to predict irAEs.A Kaplan-Meier survival curve was used to analyze the correlation between irAEs and prognosis.The Cox proportional risk model was used to analyze the related factors affecting the prognosis of patients.RESULTS A total of 132 patients were followed up,of whom 63(47.7%)developed irAEs.We looked at the two groups’clinical features and found that the two groups were statistically different in age≥65 years,Ki-67 index,white blood cell count,neutrophil count,and regulatory T cell(Treg)count(all P<0.05).Multivariate logistic regression analysis showed that Treg count was a protective factor affecting irAEs occurrence(P=0.030).The ROC curve indicated that Treg+Ki-67+age(≥65 years)combined could predict irAEs well(area under the curve=0.753,95%confidence interval:0.623-0.848,P=0.001).Results of the Kaplan-Meier survival curve showed that progressionfree survival(PFS)was longer in the irAEs group than in the non-irAEs group(P=0.001).Cox proportional hazard regression analysis suggested that the occurrence of irAEs was an independent factor for PFS(P=0.006).CONCLUSION The number of Treg cells is a separate factor that affects irAEs in advanced gastric cancer patients receiving PD-1 inhibitor immunotherapy.irAEs can affect the patients’PFS and result in longer PFS.Treg+Ki-67+age(≥65 years old)combined can better predict the occurrence of adverse reactions.
基金funded by the Humanities and Social Sciences Research Project of Ministry of Education of China[Grant ID:18YJA840018].
文摘Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,and to explore future interventions.Methods The epidemiological,behavioral,and population census data from multiple sources were analyzed to extract inputs for an acquired immunodeficiency syndrome(AIDS)epidemic model(AEM).Baseline curves,derived from historical trends in HIV prevalence,were used,and the AEM was employed to examine future intervention scenarios.Results In 2015,the modeled data suggested an adult HIV prevalence of 0.191%in Sichuan,with an estimated 128,766 people living with HIV/AIDS and 16,983 individuals with newly diagnosed infections.Considering current high-risk behaviors,the model predicts an increase in the adult prevalence to 0.306%by 2025,projecting an estimated 212,168 people living with HIV/AIDS and 16,555 individuals with newly diagnosed infections.Conclusion Heterosexual transmission will likely emerge as the primary mode of AIDS transmission in Sichuan.Furthermore,we anticipate a stabilization in the incidence of AIDS with a concurrent increase in prevalence.Implementing comprehensive intervention measures aimed at high-risk groups could effectively alleviate the spread of AIDS in Sichuan.
基金Supported by Program of Shanghai Academic Research Leader,No.22XD1404800.
文摘BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.
基金the financial support received from the Natural Science Foundation of China(32202202 and 31871735)the Zhejiang Provincial Natural Science Foundation of China(LGN22C200027)the Open Fund of the Key Laboratory of Biosafety Detection for Zhejiang Market Regulation(2022BS004)。
文摘Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic disorders.However,the role of different genetic backgrounds of mice on immune responses to food allergens upon epicutaneous sensitization is largely unknown.In this study,two strains of mice,i.e.,the BALB/c and C57BL/6 mice,were epicutaneously sensitized with ovalbumin on atopic dermatitis(AD)-like skin lesions,followed by intragastric challenge to induce IgE-mediated food allergy.Allergic outcomes were measured as clinical signs,specific antibodies and cytokines,and immune cell subpopulations,as well as changes in intestinal barrier function and gut microbiota.Results showed that both strains of mice exhibited typical food-allergic symptoms with a Th2-skewed response.The C57BL/6 mice,rather than the BALB/c mice,were fitter for establishing an epicutaneously sensitized model of food allergy since a stronger Th2-biased response and severer disruptions in the intestinal barrier and gut homeostasis were observed.This study provides knowledge for selecting an appropriate mouse model to study food-allergic responses associated with AD-like skin lesions and highlights the role of genetic variations in the immune mechanism underlying pathogenesis of food allergy.
基金supported by the Research and Development Center of Transport Industry of New Generation of Artificial Intelligence Technology(Grant No.202202H)the National Key R&D Program of China(Grant No.2019YFB1600702)the National Natural Science Foundation of China(Grant Nos.51978600&51808336).
文摘Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.
基金National Natural Science Foundation of China(Nos.12272283,12172266).
文摘The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.
文摘In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. .
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金supported by the National Natural Science Foundation of China(81825011,81930038,81961160738)Program of Shanghai Academic/Technology Research Leader(22XD1400800)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB19030200)。
文摘Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and brain parenchyma,has attracted growing attention due to its high mortality and disability rates.Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes.In this review,we summarize the common categories of neurotropic viruses,viral transmission routes in the body,host immune responses,and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection.This review should provide valuable resources and perspectives on how to cope with pandemic infections.
基金supported by the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(grant no.:ZYYCXTD-C-202006 to XG and Xiaojiaoyang Li)Beijing Municipal Science and Technology Commission(grant no.:7212174 to Xiaojiaoyang Li)+2 种基金National Natural Science Foundation of China(grant no.:82004045 to Xiaojiaoyang Li)Beijing Nova Program of Science and Technology(grant no.:Z191100001119088 to Xiaojiaoyang Li)the Young Elite Scientists Sponsorship Program by CACM(grant no.:2020-QNRC2-01 to Xiaojiaoyang Li).
文摘Idiopathic pulmonary fibrosis(IPF),characterized by aggravated alveolar destruc-tion and fibrotic matrix deposition,tendentiously experiences the stage called acute exacerbation IPF(AE-IPF)and progresses to multiple organ damage,especially liver injury.Recent studies have found a variety of immune microenvironment disorders associated with elevated IPF risk and secondary organ injury,whereas current animal models induced with bleomycin(BLM)could not completely reflect the pathologi-cal manifestations of AE-IPF patients in clinic,and the exact underlying mechanisms are not yet fully explored.In the current study,we established an AE-IPF model by tracheal administration of a single dose of BLM and then repeated administrations of lipopolysaccharide in mice.This mouse model successfully recapitulated the clinical features of AE-IPF,including excessive intrapulmonary inflammation and fibrosis and extrapulmonary manifestations,as indicated by significant upregulation of Il6,Tnfa,Il1b,Tgfb,fibronectin,and Col1a1 in both lungs and liver and elevated serum aspartate transaminase and alanine transaminase levels.These effects might be attributed to the regulation of Th17 cells.By sharing this novel murine model,we expect to pro-vide an appropriate experimental platform to investigate the pathogenesis of AE-IPF coupled with liver injury and contribute to the discovery and development of targeted interventions.