Infiltration is a fundamental component of the rainfall-runoff process. It was characterized through the adjustment and comparison of the Smith-Parlange, Green-Amptd, Philip, Horton and Kostiakov equations, using simu...Infiltration is a fundamental component of the rainfall-runoff process. It was characterized through the adjustment and comparison of the Smith-Parlange, Green-Amptd, Philip, Horton and Kostiakov equations, using simulated rain in poorly developed soils from three geological formations and from different ages (Marino Fm., Mogotes Fm., quaternary cover). Trials with the rainfall simulator were run in piedmont areas west of the city of Mendoza. Adjustments were performed separately for each of the trials and globally for each surface cover. The adjustment was satisfactory when the observed and the simulated infiltration velocity curves were compared using lumped parameters. The Green-Amptd model exhibited the best behavior for the three covers, while the Smith-Parlange equation was the least accurate, al- though it had little dispersion in the prediction errors. The Kostiakov and Horton equations yielded satisfactory results in view of the fact that the development of the infiltration rate curve was simulated after the impoundment time was determined with the Green-Amptd formula. The Philip model is not consistent, with the exception of the results obtained for the Marino cover. In the post-calibration procedure the parameters showed no noticeable differences with respect to those obtained during calibration. In every case the relative squared error of the infiltration curve was very satisfactory, below 5%.展开更多
Most ecological studies in North Africa reveal a process of continuous degradation of rangeland ecosystems as a result of overgrazing. This degradation appears across the decreasing of perennial grass diversity. Indee...Most ecological studies in North Africa reveal a process of continuous degradation of rangeland ecosystems as a result of overgrazing. This degradation appears across the decreasing of perennial grass diversity. Indeed, the majority of steppe ecosystems are characterized by a low density of perennial grass species at present. This study evaluated the effects of temperature and water limitation on the seed germination of Stipagrostis ciliata(Desf.) de Winter, a perennial grass species. The seeds were collected from the Bou Hedma Park, Sidi Bouzid Governorate, Central Tunisia. The thermal time and hydrothermal time models were used to describe the seed germination of S. ciliata under different water potentials and temperatures. The germination response of S. ciliata seeds in darkness was evaluated over a range of temperatures(15°C, 20°C, 25°C, 30°C and 35°C) and across a wide range of osmotic potentials(0.0, –0.2, –0.6, –1.2, –1.6 and –2.0 MPa) of the polyethylene glycol(PEG6000) solutions at each temperature level. Among the tested temperatures, 25°C was found to be the optimal temperature to the germination of S. ciliata seeds. The final germination percentage(75.2%) was obtained with distilled water. The progressive decrease of osmotic potential of the PEG6000 solutions inhibited the seed germination. However, the number of days to first germination was increased with a reduction of osmotic potential. A significant positive relationship was identified between final germination percentage of S. ciliata seeds and osmotic potential of the PEG6000 solutions, with R^2 ranging from 0.5678 to 0.8761. Furthermore, a high degree of congruency between predicted and observed germination time course curves was observed. In general, S. ciliata exhibits a significant adaptation capacity for water limitation and high temperature in arid ecosystems.展开更多
文摘Infiltration is a fundamental component of the rainfall-runoff process. It was characterized through the adjustment and comparison of the Smith-Parlange, Green-Amptd, Philip, Horton and Kostiakov equations, using simulated rain in poorly developed soils from three geological formations and from different ages (Marino Fm., Mogotes Fm., quaternary cover). Trials with the rainfall simulator were run in piedmont areas west of the city of Mendoza. Adjustments were performed separately for each of the trials and globally for each surface cover. The adjustment was satisfactory when the observed and the simulated infiltration velocity curves were compared using lumped parameters. The Green-Amptd model exhibited the best behavior for the three covers, while the Smith-Parlange equation was the least accurate, al- though it had little dispersion in the prediction errors. The Kostiakov and Horton equations yielded satisfactory results in view of the fact that the development of the infiltration rate curve was simulated after the impoundment time was determined with the Green-Amptd formula. The Philip model is not consistent, with the exception of the results obtained for the Marino cover. In the post-calibration procedure the parameters showed no noticeable differences with respect to those obtained during calibration. In every case the relative squared error of the infiltration curve was very satisfactory, below 5%.
基金supported by the Tunisian Ministry of Scientific Research, especially the arid lands program
文摘Most ecological studies in North Africa reveal a process of continuous degradation of rangeland ecosystems as a result of overgrazing. This degradation appears across the decreasing of perennial grass diversity. Indeed, the majority of steppe ecosystems are characterized by a low density of perennial grass species at present. This study evaluated the effects of temperature and water limitation on the seed germination of Stipagrostis ciliata(Desf.) de Winter, a perennial grass species. The seeds were collected from the Bou Hedma Park, Sidi Bouzid Governorate, Central Tunisia. The thermal time and hydrothermal time models were used to describe the seed germination of S. ciliata under different water potentials and temperatures. The germination response of S. ciliata seeds in darkness was evaluated over a range of temperatures(15°C, 20°C, 25°C, 30°C and 35°C) and across a wide range of osmotic potentials(0.0, –0.2, –0.6, –1.2, –1.6 and –2.0 MPa) of the polyethylene glycol(PEG6000) solutions at each temperature level. Among the tested temperatures, 25°C was found to be the optimal temperature to the germination of S. ciliata seeds. The final germination percentage(75.2%) was obtained with distilled water. The progressive decrease of osmotic potential of the PEG6000 solutions inhibited the seed germination. However, the number of days to first germination was increased with a reduction of osmotic potential. A significant positive relationship was identified between final germination percentage of S. ciliata seeds and osmotic potential of the PEG6000 solutions, with R^2 ranging from 0.5678 to 0.8761. Furthermore, a high degree of congruency between predicted and observed germination time course curves was observed. In general, S. ciliata exhibits a significant adaptation capacity for water limitation and high temperature in arid ecosystems.