期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Model Predictive Current Control with Adaptive-adjusting Timescales for PMSMs 被引量:15
1
作者 Feng Niu Xi Chen +4 位作者 Shaopo Huang Xiaoyan Huang Lijian Wu Kui Li Youtong Fang 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第2期108-117,共10页
A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in t... A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy. 展开更多
关键词 model predictive current control(MPCC) permanent magnet synchronous motor(PMSM) multi-timescale adaptive-adjusting method
下载PDF
Model predictive current control for PMSM driven by three-level inverter based on fractional sliding mode speed observer 被引量:1
2
作者 TENG Qing-fang LUO Wei-duo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期358-364,共7页
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ... Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme. 展开更多
关键词 permanent magnet synchronous motor(PMSM) three-level inverter fractional sliding mode speed observer model predictive current control(MPCC)
下载PDF
Finite Control Set Model Predictive Current Control of a Five-Phase PMSM with Virtual Voltage Vectors and Adaptive Control Set 被引量:9
3
作者 Wusen Wang Ying Fan +1 位作者 Siyu Chen Qiushi Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第1期136-141,共6页
This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t... This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy. 展开更多
关键词 Adaptive control set current ripple finite control set model predictive current control(FCS-MPCC) permanent magnet synchronous motor(PMSM) virtual voltage vectors
下载PDF
Model Predictive Current Control for Low-Cost Shunt Active Power Filter
4
作者 Ali A.Abdel-Aziz Mohamed A.Elgenedy Barry W.Williams 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1589-1598,共10页
Performance of a three-phase shunt active power filter(SAPF)relies on the capability of the controller to track the reference current.Therefore,designing an accurate current controller is crucial to guarantee satisfac... Performance of a three-phase shunt active power filter(SAPF)relies on the capability of the controller to track the reference current.Therefore,designing an accurate current controller is crucial to guarantee satisfactory SAPF operation.This paper presents a model predictive current controller(MPCC)for a low-cost,four-switch,shunt active power filter for power quality improvement.A four-switch,B4,converter topology is adopted as an SAPF,hence offering a simple,robust,and low-cost solution.In addition,to further reduce overall cost,only two interfacing filter inductors,instead of three,are used to eliminate switching current ripple.The proposed SAPF model MPCC is detailed for implementation,where simulation and experimental results validate effectiveness of the proposed control algorithm showing a 20%improvement in total harmonic distortion compared with a conventional hysteresis band current controller. 展开更多
关键词 Four-switch converter harmonic distortion model predictive current control power quality shunt active power filter
原文传递
Improved Optimal Duty Model Predictive Current Control Strategy for PMSM 被引量:1
5
作者 Dingdou Wen Jie Yuan +1 位作者 Yang Zhang Chuandong Shi 《Chinese Journal of Electrical Engineering》 CSCD 2022年第3期133-141,共9页
To further improve the steady-state performance of the conventional dual vector model predictive current control(MPCC),an improved optimal duty MPCC strategy for permanent magnet synchronous motor(PMSM)is proposed.Thi... To further improve the steady-state performance of the conventional dual vector model predictive current control(MPCC),an improved optimal duty MPCC strategy for permanent magnet synchronous motor(PMSM)is proposed.This strategy is realized by selecting an optimal voltage vector combination and its duration from the five basic voltage vector combinations,followed by acting on the inverter.The five combinations are:the combination of the optimal voltage vector at the previous moment and basic voltage vector with an angle difference of 60°;the combination of the optimal voltage vector at the previous moment and basic voltage vector with an angle difference of-60°;the combination of the aforementioned three basic voltage vectors with the zero vector.Experimental results indicate that the method effectively reduces the stator current ripple without increasing the calculational burden.Furthermore,it improves the steady-state performance of the system without altering the dynamic performance of the system. 展开更多
关键词 model predictive current control improved optimal duty optimal voltage vector combination steady-state performance PMSM
原文传递
Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
6
作者 LIU Huashan LI Jie YAO Fei 《Journal of Donghua University(English Edition)》 EI CAS 2020年第4期286-292,共7页
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ... Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments. 展开更多
关键词 open-end winding permanent magnet synchronous motor(OW-PMSM) zero-sequence current HARMONIC model predictive current control common-mode voltage
下载PDF
Predictive current control system of PMSM based on LADRC 被引量:2
7
作者 Wang Xiaopeng Zhao Jun +1 位作者 Wang Bohui Li Baomin 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期227-234,共8页
For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting ... For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced. 展开更多
关键词 permanent magnet synchronous motor(PMSM) two-vector model predictive current control linear active disturbance rejection control speed control system
下载PDF
Low-complexity model predictive control of a four-level active neutral point clamped inverter without weighting factors
8
作者 Chaoqun Xiang Ziyin Fan +2 位作者 Songyang Jiang Xinan Zhang Shu Cheng 《Transportation Safety and Environment》 EI 2024年第2期96-103,共8页
The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active swit... The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results. 展开更多
关键词 four-level active neutral point clamped(ANPC)inverter model predictive current control(MPCC) low complexity without weighting factors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部