期刊文献+
共找到381篇文章
< 1 2 20 >
每页显示 20 50 100
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
1
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection Large-scale model test
下载PDF
Hybrid Model Testing Technique for Deep-Sea Platforms Based on Equivalent Water Depth Truncation 被引量:4
2
作者 张火明 杨建民 肖龙飞 《China Ocean Engineering》 SCIE EI 2007年第3期401-416,共16页
In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tn... In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented. 展开更多
关键词 hybrid model testing technique equivalent water depth truncation FPSO hydrodynamic response TURRET
下载PDF
Review of transparent soil model testing technique for underground construction:Ground visualization and result digitalization 被引量:3
3
作者 Wengang Zhang Xin Gu +2 位作者 Wenhan Zhong Zhitao Ma Xuanming Ding 《Underground Space》 SCIE EI 2022年第4期702-723,共22页
In geotechnical engineering,the transparent soil(also called transparent media)technique is an effective tool for conducting experimental tests and investigating the displacement characteristics and stress distributio... In geotechnical engineering,the transparent soil(also called transparent media)technique is an effective tool for conducting experimental tests and investigating the displacement characteristics and stress distribution of soils.It plays a vital role in the observation of internal soil deformations.This study aims to briefly review the current state of some of the common materials used to formulate transparent soil models and the application of the transparent soil technique to underground construction over the last 20 years.To this end,the basic concepts of transparent soils are introduced.Then,several representative applications of transparent soil in underground construction(i.e.,soil deformations induced by the penetration of pile foundations,tunnel excavation-induced movements,and structural responses caused by braced excavations)are presented.Because some research gaps may exist,certain potential research topics are proposed.This review can serve as a guideline for researchers performing experiments using transparent soils. 展开更多
关键词 Transparent soil technique model testing Underground construction
原文传递
Model Testing for Ship Hydroelasticity: A Review and Future Trends 被引量:1
4
作者 焦甲龙 任慧龙 陈超核 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期641-650,共10页
Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are pr... Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are presented in this paper. The research highlights with respect to ship hydroelasticity and key points in model testing are summarized at first. Then testing techniques including laboratory tank test and full-scale sea trial are reviewed, and both their advantages and disadvantages are analyzed comprehensively. Based on the conventional testing approaches, a state-of-the-art testing approach which includes performing tests using large-scale model at sea is proposed. Furthermore, recommendations towards the further development of ship hydroelasticity tests are forecasted and discussed. 展开更多
关键词 ship hydroelasticity wave loads model testing sea trial large-scale model
原文传递
Evaluating the safety of high arch dams with fractures based on numerical simulation and geomechanical model testing 被引量:3
5
作者 HE Zhu LIU YaoRu +1 位作者 PAN YuanWei YANG Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第10期1648-1659,共12页
It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stabi... It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stability and the extension probability of fractures. Numerical simulation forecasted the dam displacement and the operating behavior based on the parameters obtained from the back analysis. Geomechanical model test was based on small block masonry and the models with or without fractures were both tested. The results show that the deformation of dams is in line with general rules at a normal water load and the extension probability of the existing fractures is very small, which has no significant impact on the global stability of dams. Moreover, the failure process of arch dams with the existing fractures in dams at overload scenarios is similar to the one without the embedded fractures, i.e., the failure crack which is not caused by the existing fractures inside comes into being on the surface of dams itself. 展开更多
关键词 numerical simulation geomechanical model test safety evaluation arch dams FRACTURES
原文传递
On modeling approach for embedded real-time software simulation testing 被引量:6
6
作者 Yin Yongfeng Liu Bin Zhong Deming Jiang Tongmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期420-426,共7页
Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and emb... Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software. 展开更多
关键词 embedded real-time software software testing testing modeling SIMULATION
下载PDF
On composite foundation with different vertical reinforcing elements under vertical loading:a physical model testing study 被引量:2
7
作者 Xian-zhi WANG Jun-jie ZHENG Jian-hua YIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第2期80-87,共8页
Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of ... Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only. 展开更多
关键词 Steel pipe pile Concrete pile Lime column Sand column Composite foundation model test Pile-soil stress ratio
原文传递
Model testing of tripod caisson foundations in silty clay subjected to eccentric lateral loads
8
作者 Shili MA Liquan XIE Tsung-Chow SU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第3期467-476,共10页
In this study,model tests were conducted to investigate the bearing capacities of tripod caisson foundations subjected to eccentric lateral loads in silty clay.Lateral load–rotation curves of five eccentric-shaped tr... In this study,model tests were conducted to investigate the bearing capacities of tripod caisson foundations subjected to eccentric lateral loads in silty clay.Lateral load–rotation curves of five eccentric-shaped tripod suction foundations were plotted to analyze the bearing capacities at different loading angles.It was observed that the loading angle significantly influenced the bearing capacity of the foundations,particularly for eccentric tripod caisson foundations.Compared with eccentric tripod caisson foundations,the traditional tripod foundation has a relatively high ultimate lateral capacity at the omnidirectional loading angle.By analyzing the displacement of the caissons,a formula for the rotational center of the tripod caisson foundation subjected to an eccentric lateral load was derived.The depth of the rotation center was 0.68–0.92 times the height of the caisson when the bearing capacity reached the limit.Under the undrained condition,suction was generated under the lid of the“up-lift”caisson,which helps resist lateral forces from the wind and waves. 展开更多
关键词 tripod caisson foundation silty clay eccentric lateral capacity model tests
原文传递
Dynamic response of mountain tunnel,bridge,and embankment along the Sichuan-Tibet transportation corridor to active fault based on model tests
9
作者 HUANG Beixiu QIAO Sijia +2 位作者 CHEN Xulei LI Lihui QI Shengwen 《Journal of Mountain Science》 SCIE CSCD 2024年第1期182-199,共18页
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif... The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor. 展开更多
关键词 Dynamic response Engineering structure Sichuan-Tibet transportation corridor Active fault EARTHQUAKE model test
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
10
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution model tests
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
11
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
12
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test Surface 3D deformation Stability identification
下载PDF
Physical model test and application of 3D printing rock-like specimens to laminated rock tunnels
13
作者 Yun Tian Weizhong Chen +3 位作者 Hongming Tian Xiaoyun Shu Linkai He Man Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4625-4637,共13页
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t... Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks. 展开更多
关键词 Bedding plane Three-dimensional(3D)printing Physical model test Non-uniform deformation Digital imaging correlation(DIC)
下载PDF
Laboratory Model Tests and DEM Simulations of Unloading-Induced Tunnel Failure Mechanism 被引量:1
14
作者 Abierdi Yuzhou Xiang +3 位作者 Haiyi Zhong Xin Gu Hanlong Liu Wengang Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第5期825-844,共20页
Tunnel excavation is a complicated loading-unloading-reloading process characterized by decreased radial stresses and increased axial stresses.An approach that considers only loading,is generally used in tunnel model ... Tunnel excavation is a complicated loading-unloading-reloading process characterized by decreased radial stresses and increased axial stresses.An approach that considers only loading,is generally used in tunnel model testing.However,this approach is incapable of characterizing the unloading effects induced by excavation on surrounding rocks and hence presents radial and tangential stress paths during the failure process that are different from the actual stress state of tunnels.This paper carried out a comparative analysis using laboratory model testing and particle flow code(PFC2D)-based numerical simulation,and shed light upon the crack propagation process and,microscopic stress and force chain variations during the loading-unloading process.The failure mode observed in the unloading model test is shear failure.The force chains are strongly correlated with the concrete fracture propagation.In addition,the change patterns of the radial and tangential stresses of surrounding rocks in the broken region,as well as the influence of the initial stress on failure loads are revealed.The surrounding soil of tunnel failure evolution as well as extent and shape of the damage zone during the excavation-induced unloading were also studied. 展开更多
关键词 TUNNEL UNLOADING model testing particle flow model force chain
下载PDF
Generalized Method of Moments and Generalized Estimating Functions Based on Probability Generating Function for Count Models
15
作者 Andrew Luong 《Open Journal of Statistics》 2020年第3期516-539,共24页
Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation... Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation methods developed are also related to estimation methods based on generalized estimating equations but with the advantage of having statistics for model testing. The methods proposed overcome numerical problems often encountered when the probability mass functions have no closed forms which prevent the use of maximum likelihood (ML) procedures and in general, ML procedures do not lead to distribution free model testing statistics. 展开更多
关键词 Mixture Distributions Consistent Chi-Square Tests Infinitely Divisible Distributions Mixture Distributions Distribution Free Test Statistics model testing
下载PDF
Model test vs virtual simulation of a VLCC FPSO hookup 被引量:1
16
作者 郝军 孙玉柱 +1 位作者 吴子全 Alan WANG 《Journal of Marine Science and Application》 2009年第2期137-143,共7页
This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke ... This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems. 展开更多
关键词 FPSO SYMS model test virtual simulation
下载PDF
Comparative study of model tests on automatically formed roadway and gob-side entry driving in deep coal mines 被引量:19
17
作者 Qi Wang Manchao He +4 位作者 Shucai Li Zhenhua Jiang Yue Wang Qian Qin Bei Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期591-601,共11页
Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off str... Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars. 展开更多
关键词 Automatically formed roadway Roof cutting Bolt grouting Roadway control model test
下载PDF
Distributed Fiber Optic Monitoring and Stability Analysis of a Model Slope under Surcharge Loading 被引量:23
18
作者 ZHU Hong-Hu SHI Bin +2 位作者 ZHANG Jie YAN Jun-Fan ZHANG Cheng-Cheng 《Journal of Mountain Science》 SCIE CSCD 2014年第4期979-989,共11页
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso... In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope. 展开更多
关键词 Slope stability Geotechnical monitoring Fiber optic sensor Distributed strain sensing Brillouin optical time-domain analysis (BOTDA) model test
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:13
19
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism Physical model test 3DEC Layered soft rocks Large deformation
下载PDF
Model test to investigate failure mechanism and loading characteristics of shallow-bias tunnels with small clear distance 被引量:11
20
作者 雷明锋 林大涌 +3 位作者 杨伟超 施成华 彭立敏 黄娟 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3312-3321,共10页
Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias t... Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance. 展开更多
关键词 shallow-bias tunnels with small spacing failure mechanism loading characteristics model test
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部