The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil application...The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.展开更多
In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a...In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.展开更多
This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co...This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.展开更多
Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This p...Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.展开更多
A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension...A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.展开更多
Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train ...Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.展开更多
A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free,...A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent.展开更多
To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the u...To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.展开更多
In this paper,an adaptive disturbance-rejection proportional–integral–differential(PID)control method is proposed for a class of nonlinear systems.First,PID-type criterion is introduced in a model-free adaptive cont...In this paper,an adaptive disturbance-rejection proportional–integral–differential(PID)control method is proposed for a class of nonlinear systems.First,PID-type criterion is introduced in a model-free adaptive control(MFAC)framework,which gives an optimal control interpretation for PID controller.Then,the design of adaptive disturbance rejection PID is proposed based on this new interpretation to realize controller gain auto-tuning.Due to the ingenious integration of active disturbance rejection and adaptive mechanism,the proposed adaptive disturbance rejection PID control scheme exhibits better control performance than MFAC case.Furthermore,the boundedness of controller gain,the convergence of tracking error and the bounded-input–bounded-output stability are proved for the proposed control system.Finally,the effectiveness of the proposed method is verified by numerical simulation.展开更多
Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un- modeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an in...Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un- modeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an inaccurate mathematical model, creating slow response speed and high jitter. To solve these problems, a model-free adaptive control (MFAC) scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing (3-DoF HMB) control system. The scheme for 3-DoF HMB depends only on the control current and the objective balanced position, and it does not involve any model information. The design process of a parameter estimation algorithm is model-free, based directly on pseudo-partial-derivative (PPD) derived online from the input and output data information. The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters, and two kinds of operation situations (linear and nonlinear areas) are present to analyze the validity of MFAC in detail. Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed, smaller steady state error, and higher stability.展开更多
Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch ...Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch systems with speed disturbance suppression.First,an improved small-world neural network with topology optimization is used for 15-second-ahead forecasting of wind speed,whose rolling time is 1s,and the predicted value serves as a feedforward to obtain the early compensation variation of the pitch angle.Second,a function of the multi-objective optimization at full wind speed with optimal power point tracking and minimum control variation is constructed,and an advanced one-step adaptive predictive control algorithm for wind power is proposed based on the online estimation and prediction of the time-varying pseudo partial derivative(PPD).In addition,the compound MFAPC framework is synthetically obtained,whose closed-loop effectiveness is verified by a BP-built pitch system based on the SCADA data with all working conditions.Robustness of the schemes has been analyzed in terms of parametric uncertainties and different operating conditions,and a detailed comparison is finally presented.The results show that the proposed MFAPC can not only effectively suppress the random disturbance of wind speed,but also meet the stability of wind power and the security of grid-connections for all operating conditions.展开更多
Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete t...Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.展开更多
In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved slidi...In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.展开更多
In this paper,the distributed optimization problem is investigated for a class of general nonlinear model-free multi-agent systems.The dynamical model of each agent is unknown and only the input/output data are availa...In this paper,the distributed optimization problem is investigated for a class of general nonlinear model-free multi-agent systems.The dynamical model of each agent is unknown and only the input/output data are available.A model-free adaptive control method is employed,by which the original unknown nonlinear system is equivalently converted into a dynamic linearized model.An event-triggered consensus scheme is developed to guarantee that the consensus error of the outputs of all agents is convergent.Then,by means of the distributed gradient descent method,a novel event-triggered model-free adaptive distributed optimization algorithm is put forward.Sufficient conditions are established to ensure the consensus and optimality of the addressed system.Finally,simulation results are provided to validate the effectiveness of the proposed approach.展开更多
文摘The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.
基金supported in part by the National Natural Science Foundation of China(U1804147,61833001,61873139,61573129)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2)the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)。
文摘In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.
基金supported in part by the National Natural Science Foundation of China (62173182,61773212)the Intergovernmental International Science and Technology Innovation Cooperation Key Project of Chinese National Key R&D Program (2021YFE0102700)。
文摘This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.
基金Sponsored by the National Natural Science Foundation of China(No.51605415)Natural Science Foundation of Hebei Province(No.F2016203494,E2017203240)。
文摘Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11102007)the Fundamental Research Fund for the Central Universities(Grant No.YWF-14-YHXY-012)
文摘A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.
基金The authors thank the anonymous reviewers for their valuable suggestions.This work is supported by funds National Natural Science Foundation of China(Grants No.52162048,61991404 and 62003138)National Key Research and Development Program of China(Grant No.2020YFB1713703)Jiangxi Graduate Innovation Fund Project(Grant No.YC2021-S446).
文摘Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.
文摘A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent.
基金National Natural Science Foundation of China(No.51567018)
文摘To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.
基金This work was supported in part by Huaqiao University(Z14Y0002)in part by the Natural Science Foundation of Fujian Province(2019J01053)+4 种基金Qing-Guo Wang acknowledges the financial support of BNU Talent seed fund,UIC Start-up Fund(R72021115)Guangdong Key Lab of AI and Multi-modal Data Processing(2020KSYS007)the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science(2022B1212010006)Guangdong Higher Education Upgrading Plan 2021-2025(R0400001-22,R0400025-21)UIC,China,which partially funded his research on thiswork.
文摘In this paper,an adaptive disturbance-rejection proportional–integral–differential(PID)control method is proposed for a class of nonlinear systems.First,PID-type criterion is introduced in a model-free adaptive control(MFAC)framework,which gives an optimal control interpretation for PID controller.Then,the design of adaptive disturbance rejection PID is proposed based on this new interpretation to realize controller gain auto-tuning.Due to the ingenious integration of active disturbance rejection and adaptive mechanism,the proposed adaptive disturbance rejection PID control scheme exhibits better control performance than MFAC case.Furthermore,the boundedness of controller gain,the convergence of tracking error and the bounded-input–bounded-output stability are proved for the proposed control system.Finally,the effectiveness of the proposed method is verified by numerical simulation.
基金Project supported by the National Natural Science Foundation of China (Nos. 51707082 and 51607080), the Natural Science Foundation of Jiangsu Province, China (Nos. BK20170546 and BK20150510), the China Postdoctoral Science Foundation (No. 2017M620192), and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un- modeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an inaccurate mathematical model, creating slow response speed and high jitter. To solve these problems, a model-free adaptive control (MFAC) scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing (3-DoF HMB) control system. The scheme for 3-DoF HMB depends only on the control current and the objective balanced position, and it does not involve any model information. The design process of a parameter estimation algorithm is model-free, based directly on pseudo-partial-derivative (PPD) derived online from the input and output data information. The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters, and two kinds of operation situations (linear and nonlinear areas) are present to analyze the validity of MFAC in detail. Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed, smaller steady state error, and higher stability.
基金supported by National Natural Science Foundation of China(Grant No.50776005 and 51577008)。
文摘Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch systems with speed disturbance suppression.First,an improved small-world neural network with topology optimization is used for 15-second-ahead forecasting of wind speed,whose rolling time is 1s,and the predicted value serves as a feedforward to obtain the early compensation variation of the pitch angle.Second,a function of the multi-objective optimization at full wind speed with optimal power point tracking and minimum control variation is constructed,and an advanced one-step adaptive predictive control algorithm for wind power is proposed based on the online estimation and prediction of the time-varying pseudo partial derivative(PPD).In addition,the compound MFAPC framework is synthetically obtained,whose closed-loop effectiveness is verified by a BP-built pitch system based on the SCADA data with all working conditions.Robustness of the schemes has been analyzed in terms of parametric uncertainties and different operating conditions,and a detailed comparison is finally presented.The results show that the proposed MFAPC can not only effectively suppress the random disturbance of wind speed,but also meet the stability of wind power and the security of grid-connections for all operating conditions.
基金supported by University of Science and Technology Liaoning,National Financial Security and System Equipment Engineering Research Center(No.USTLKFGJ201502)
文摘Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.
文摘In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.
基金Project supported by the National Natural Science Foundation of China(No.62003213)。
文摘In this paper,the distributed optimization problem is investigated for a class of general nonlinear model-free multi-agent systems.The dynamical model of each agent is unknown and only the input/output data are available.A model-free adaptive control method is employed,by which the original unknown nonlinear system is equivalently converted into a dynamic linearized model.An event-triggered consensus scheme is developed to guarantee that the consensus error of the outputs of all agents is convergent.Then,by means of the distributed gradient descent method,a novel event-triggered model-free adaptive distributed optimization algorithm is put forward.Sufficient conditions are established to ensure the consensus and optimality of the addressed system.Finally,simulation results are provided to validate the effectiveness of the proposed approach.