The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modifi...The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modification of H3PW12O40(40%)/SiO2 gave the most promising result of 20% dimethyl ether conversion and 34.8% dimethoxymethane selectivity. Dimethoxymethane could be synthe- sized via methoxy groups decomposed from dimethyl ether through the synergistic effect between the acid sites and the redox sites of Cs modified H3PW12O40(40%)/SiO2.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
The anaerobic-anoxic oxidation ditch(A^(2)/O OD)process is popularly used to eliminate nutrients from domestic wastewater.In order to identify the existence of denitrifying phosphorus removing bacteria(DPB),evaluate t...The anaerobic-anoxic oxidation ditch(A^(2)/O OD)process is popularly used to eliminate nutrients from domestic wastewater.In order to identify the existence of denitrifying phosphorus removing bacteria(DPB),evaluate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A^(2)/O OD process,a pilot-scale A^(2)/O OD plant(375 L)was conducted.At the same time batch tests using sequence batch reactors(12 L and 4 L)were operated to reveal the significance of anoxic phosphorus removal.The results indicated that:The average removal efficiency of COD,NH^(+)_(4),PO^(3–)_(4),and TN were 88.2%,92.6%,87.8%,and 73.1%,respectively,when the steady state of the pilotscale A^(2)/O OD plant was reached during 31–73 d,demonstrating a good denitrifying phosphorus removal performance.Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO^(-)_(2) could be used as electron receptors in denitrifying phosphorus removal,and the phosphorus uptake rate with NO^(-)_(2) as the electron receptor was higher than that with NO^(–)_(3) when the initial concentration of either NO^(-)_(2) or NO^(–)_(3) was 40 mg/L.展开更多
基金Foundation items:the National Natural Science Foundation of China(No.20373085)the Natural Science Foundation of Shanxi Province(No.20051023)
文摘The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modification of H3PW12O40(40%)/SiO2 gave the most promising result of 20% dimethyl ether conversion and 34.8% dimethoxymethane selectivity. Dimethoxymethane could be synthe- sized via methoxy groups decomposed from dimethyl ether through the synergistic effect between the acid sites and the redox sites of Cs modified H3PW12O40(40%)/SiO2.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
基金This work was supported by the National Natural Science Foundation of China—the Abroad Young Scholar Foundation(Grant No.50628808)the National Key Technologies Research and Development Program of China during the 11th Five-year Plan Period(Grant No.2006BAC19B02).
文摘The anaerobic-anoxic oxidation ditch(A^(2)/O OD)process is popularly used to eliminate nutrients from domestic wastewater.In order to identify the existence of denitrifying phosphorus removing bacteria(DPB),evaluate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A^(2)/O OD process,a pilot-scale A^(2)/O OD plant(375 L)was conducted.At the same time batch tests using sequence batch reactors(12 L and 4 L)were operated to reveal the significance of anoxic phosphorus removal.The results indicated that:The average removal efficiency of COD,NH^(+)_(4),PO^(3–)_(4),and TN were 88.2%,92.6%,87.8%,and 73.1%,respectively,when the steady state of the pilotscale A^(2)/O OD plant was reached during 31–73 d,demonstrating a good denitrifying phosphorus removal performance.Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO^(-)_(2) could be used as electron receptors in denitrifying phosphorus removal,and the phosphorus uptake rate with NO^(-)_(2) as the electron receptor was higher than that with NO^(–)_(3) when the initial concentration of either NO^(-)_(2) or NO^(–)_(3) was 40 mg/L.