Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM ope...Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.展开更多
In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase ...In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 μW. The chip is implemented in UMC 0.18μm mix-mode CMOS technology, and the chip area is 0.06 mm^2.展开更多
An approach for full duty frequency-doubled triangle shape lightwave generation is proposed and demonstrated.It requires a dual-parallel Mach–Zehnder modulator(DP-MZM) driven by a sinusoidal signal. A stop band fil...An approach for full duty frequency-doubled triangle shape lightwave generation is proposed and demonstrated.It requires a dual-parallel Mach–Zehnder modulator(DP-MZM) driven by a sinusoidal signal. A stop band filter is coupled to filter out two undesired sidebands. By tuning the bias voltage applied to the DP-MZM, the output optical intensity with a full duty cycle triangle shape profile can be obtained. It is found that the required modulation index is no longer a fixed one. It can vary within a range, without degrading the target waveform. The principle is analyzed by theory and evaluated by simulation. A proof-of-concept experiment is also conducted.Good agreements between theoretical prediction and experimental results have been found. This approach might be attractive due to the feature of a variable modulation index, which insures simple operation in practice.展开更多
This paper proposes a high-throughput short reference differential chaos shift keying cooperative communication system with the aid of code index modulation,referred to as CIM-SR-DCSK-CC system.In the proposed CIM-SR-...This paper proposes a high-throughput short reference differential chaos shift keying cooperative communication system with the aid of code index modulation,referred to as CIM-SR-DCSK-CC system.In the proposed CIM-SR-DCSK-CC system,the source transmits information bits to both the relay and destination in the first time slot,while the relay not only forwards the source information bits but also sends new information bits to the destination in the second time slot.To be specific,the relay employs an N-order Walsh code to carry additional log_(2)N information bits,which are superimposed onto the SRDCSK signal carrying the decoded source information bits.Subsequently,the superimposed signal carrying both the source and relay information bits is transmitted to the destination.Moreover,the theoretical bit error rate(BER)expressions of the proposed CIMSR-DCSK-CC system are derived over additive white Gaussian noise(AWGN)and multipath Rayleigh fading channels.Compared with the conventional DCSKCC system and SR-DCSK-CC system,the proposed CIM-SR-DCSK-CC system can significantly improve the throughput without deteriorating any BER performance.As a consequence,the proposed system is very promising for the applications of the 6G-enabled lowpower and high-rate communication.展开更多
recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarri...recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency.展开更多
Orthogonal Time Frequency Space(OTFS)signaling with index modulation(IM)is a promising transmission scheme characterized by high transmission efficiency for high mobility scenarios.In this paper,we study the receiver ...Orthogonal Time Frequency Space(OTFS)signaling with index modulation(IM)is a promising transmission scheme characterized by high transmission efficiency for high mobility scenarios.In this paper,we study the receiver for coded OTFS-IM system.First,we construct the corresponding factor graph,on which the structured prior incorporating activation pattern constraint and channel coding is devised.Then we develop a iterative receiver via structured prior-based hybrid belief propagation(BP)and expectation propagation(EP)algorithm,named as StrBP-EP,for the coded OTFS-IM system.To reduce the computational complexity of discrete distribution introduced by structured prior,Gaussian approximation conducted by EP is adopted.To further reduce the complexity,we derive two variations of the proposed algorithm by using some approximations.Simulation results validate the superior performance of the proposed algorithm.展开更多
Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS...Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.展开更多
In view of the fact that the current adaptive steganography algorithms are difficult to resist scaling attacks and that a method resisting scaling attack is only for the nearest neighbor interpolation method,this pape...In view of the fact that the current adaptive steganography algorithms are difficult to resist scaling attacks and that a method resisting scaling attack is only for the nearest neighbor interpolation method,this paper proposes an image steganography algorithm based on quantization index modulation resisting both scaling attacks and statistical detection.For the spatial image,this paper uses the watermarking algorithm based on quantization index modulation to extract the embedded domain.Then construct the embedding distortion function of the new embedded domain based on S-UNIWARD steganography,and use the minimum distortion coding to realize the embedding of the secret messages.Finally,according to the embedding modification amplitude of secret messages in the new embedded domain,the quantization index modulation algorithm is applied to realize the final embedding of secret messages in the original embedded domain.The experimental results show that the algorithm proposed is robust to the three common interpolation attacks including the nearest neighbor interpolation,the bilinear interpolation and the bicubic interpolation.And the average correct extraction rate of embedded messages increases from 50%to over 93% after 0.5 times-fold scaling attack using the bicubic interpolation method,compared with the classical steganography algorithm S-UNIWARD.Also the algorithm proposed has higher detection resistance than the original watermarking algorithm based on quantization index modulation.展开更多
In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)syst...In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.展开更多
The fiber Fabry-Perot interferometer used to measure the refractive index modulation of polymer-dispersed liquid crystal is introduced.From measuring the quantity of the interference fringe shift with a CCD based on t...The fiber Fabry-Perot interferometer used to measure the refractive index modulation of polymer-dispersed liquid crystal is introduced.From measuring the quantity of the interference fringe shift with a CCD based on the theory of isoclinal interference fringes formatting,the maximal refractive index modulation versus different external voltages,3.899×10-3 in the external voltage of 57.4 V/μm,and the dynamic refractive index modulation versus response time in the external voltage of 8 V/μm are found in our prepared 1.250 mm-thick PMMA/E49/TNF/ECZ polymer-dispersed liquid crystals.The experimental results will be helpful to understand the photoinduced reaction mechanism of the material and optimize the mixture ratio of each component.展开更多
Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengths of laser and the order of i...Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengths of laser and the order of interference, we introduce a new method to measure the modulation degree of refractive index in photorefractive materials through detecting the shift of the interference fringe in a fiber Fabry-Perot interferometer with a CCD. The measurement precision is also analyzed. With this method, the modulation degree of refractive index in our prepared SCLP/E7/C 60 photorefractive polymer is measured for different external voltages and the external voltage corresponding to the maximal modulation degree of refractive index is reported. The dynamic change of refractive index in the SCLP/E7/C 60 is also studied, which will be helpful to understand the reaction mechanism of photochemistry in the material.展开更多
In this paper,efficient signal detectors are designed for Orthogonal Time Frequency Space(OTFS)modulation with Index Modulation(IM)systems.Firstly,the Minimum Mean Squared Error(MMSE)based linear equalizer and its cor...In this paper,efficient signal detectors are designed for Orthogonal Time Frequency Space(OTFS)modulation with Index Modulation(IM)systems.Firstly,the Minimum Mean Squared Error(MMSE)based linear equalizer and its corresponding soft-aided decision are studied for OTFS-IM.To further improve the performance,a Vectorby-Vector-aided Message Passing(VV-MP)detector and its associated soft-decision are proposed,where each IM symbol is considered an entire vector utilized for message calculation and passing.Simulation results are shown that the OTFS-IM system relying on the proposed detectors is capable of providing considerable Bit Error Rate(BER)performance gains over the OTFS and Orthogonal Frequency Division Multiplex(OFDM)with IM systems.展开更多
Generalised pre-coding quadrature spatial modulation(GPQSM)is recently proposed to increase the spectral efficiency(SE)of GPSM,which extends the transmitted symbols into in-phase/quadrature domains.In this paper,a nov...Generalised pre-coding quadrature spatial modulation(GPQSM)is recently proposed to increase the spectral efficiency(SE)of GPSM,which extends the transmitted symbols into in-phase/quadrature domains.In this paper,a novel scheme named non-orthogonal multiple access(NOMA)-aided GPQSM(NOMA-GPQSM),which incorporates the GPQSM scheme into the multi-user communication networks with assist of NOMA,is proposed to further improve the SE and system performance.In NOMA-GPQSM,one base station(BS)is set to serve K users,where user 1 is closest to the BS,and user K is farthest from the BS.In addition,a low-complexity detection method is proposed to reduce the high detection complexity of the maximum-likelihood(ML)detection in successive interference cancellation(SIC)method for all users by NOMA-GPQSM.The theoretical analysis of the BER performance for all users is also derived.Simulation results show that near users achieve relatively good performance,and far users achieve acceptable performance by adjusting power factors for all users in NOMA-GPQSM.展开更多
Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the el...Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the electromagnetic waves from the active transmission for additional information transfer(i.e.,passive transmission).In this paper,a hybrid RIS-based modulation,termed hybrid phase and code modulation(HPCM),is proposed to improve the reliability of RIS-assisted symbiotic radio.In RIS-HPCM,the RIS simultaneously performs direct sequence spread spectrum and passive beamforming on incident signals.Moreover,both the spreading code and phase offset are exploited to carry the RIS’s own information.A low-complexity detector is designed,in which the receiver first detects the spreading codes and then demodulates the constellation symbols.We analyze the bit error rate(BER)performance of RIS-HPCM over Rician fading channels.BER upper bounds and approximate BER expressions are derived in closed-form for maximum-likelihood and low-complexity detectors,respectively.Simulation results in terms of BER verify the analysis and show the superiority of RIS-HPCM over the existing RIS-based modulation.展开更多
Holographic optical elements(HOEs)based on polymer composites have become a research hot spot in recent years for augmented reality(AR)due to the significant improvement of optical performance,dynamic range,ease of pr...Holographic optical elements(HOEs)based on polymer composites have become a research hot spot in recent years for augmented reality(AR)due to the significant improvement of optical performance,dynamic range,ease of processing and high yield rate.Nevertheless,it remains a formidable challenge to obtain a large field of view(FOV)and brightness due to the limited refractive index modulation.Herein,we report an effective method to tackle the challenge by doping an epoxy liquid crystal termed E6M,which enables a large refractive index modulation of 0.050@633 nm and low haze of 5.0%at a doping concentration of 5 wt%.This achievement may be ascribed to the improved molecular ordering of liquid crystals within the holographic polymer composites.The high refractive index modulation can endow transmission-type holographic polymer composites with a high diffraction efficiency of 96.2%at a small thickness of 5μm,which would promise the design of thin and lightweight AR devices.展开更多
Compared with common near space satellite Telemetry,Telecommand,and Communication(TT&C),deep space TT&C presents a more challenging environment such as long distance,very low Signal to Noise Ratio(SNR).How to ...Compared with common near space satellite Telemetry,Telecommand,and Communication(TT&C),deep space TT&C presents a more challenging environment such as long distance,very low Signal to Noise Ratio(SNR).How to acquire main carrier exactly becomes a hot focus for deep space communications.Already there emerged some main carrier acquisition algorithms,but they all require high SNR and small modulation index.In this paper,we develop a new acquire algorithm.First we use the spectral energy center algorithm to shorten the original sequence,filter out some noise and make the spectral more symmetric.Then we adopt the spectral symmetry algorithm to make full use of the whole spectrum information,and utilize FFT to reduce computation complexity.Simulation results show that our algorithm can acquire main carrier successfully under large modulation index and get good performance with low Carrier to Noise Ratio(CNR).展开更多
Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great dem...Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.展开更多
In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and <i>M</i>-ar...In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and <i>M</i>-ary amplitude-phase-shift keying (MAPSK). Description of such signals and the formulas for calculating the minimum squared Euclidean distance are presented. We have developed an analytic building method for even and odd values of <i>M</i>. Hence, no computer search and no heuristic methods are required. The new optimized BFSK-MAPSK (<i>M </i>= 5,6,···,16) signal constructions are built for the values of modulation indexes <i>h</i> =0.1,0.15,···,0.5 and their parameters are given. The results of computer simulations are also provided. Based on the obtained results we can conclude, that BFSK-MAPSK systems outperform similar four-dimensional systems both in terms of minimum squared Euclidean distance and simulated symbol error rate.展开更多
This paper presents a method to detect the quantization index modulation(QIM) steganography in G.723.1 bit stream.We show that the distribution of each quantization index(codeword) in the quantization index sequence h...This paper presents a method to detect the quantization index modulation(QIM) steganography in G.723.1 bit stream.We show that the distribution of each quantization index(codeword) in the quantization index sequence has unbalanced and correlated characteristics.We present the designs of statistical models to extract the quantitative feature vectors of these characteristics.Combining the extracted vectors with the support vector machine,we build the classifier for detecting the QIM steganography in G.723.1 bit stream.The experiment shows that the method has far better performance than the existing blind detection method which extracts the feature vector in an uncompressed domain.The recall and precision of our method are all more than 90% even for a compressed bit stream duration as low as 3.6 s.展开更多
Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronizati...Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.展开更多
基金supported by National Natural Science Foundation of China (No. 61971149, 62071504, 62271208)in part by the Special Projects in Key Fields for General Universities of Guangdong Province (No. 2020ZDZX3025, 2021ZDZX056)+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515011657)in part by the Featured Innovation Projects of Guangdong Province of China (No. 2021KTSCX049)。
文摘Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.
文摘In a typical RFID system the reader transmits modulated RF power to provide both data and energy for the passive transponder. Low modulation index RF energy is preferable for an adequate tag power supply and increase in communication range but gives rise to difficulties for near-field conventional demodulation. Therefore, a novel ASK demodulator for minimum 20% modulation index RF signal detection over a range of 23 dB is presented. Thanks to the proposed innovative divisional linear conversion from the power into voltage signal, the detection sensitivity is ensured over a wide power range with low power consumption of 8.6 μW. The chip is implemented in UMC 0.18μm mix-mode CMOS technology, and the chip area is 0.06 mm^2.
基金supported in part by the National Natural Science Foundation of China under Grant No.61405007
文摘An approach for full duty frequency-doubled triangle shape lightwave generation is proposed and demonstrated.It requires a dual-parallel Mach–Zehnder modulator(DP-MZM) driven by a sinusoidal signal. A stop band filter is coupled to filter out two undesired sidebands. By tuning the bias voltage applied to the DP-MZM, the output optical intensity with a full duty cycle triangle shape profile can be obtained. It is found that the required modulation index is no longer a fixed one. It can vary within a range, without degrading the target waveform. The principle is analyzed by theory and evaluated by simulation. A proof-of-concept experiment is also conducted.Good agreements between theoretical prediction and experimental results have been found. This approach might be attractive due to the feature of a variable modulation index, which insures simple operation in practice.
基金supported in part by the NSF of China under Grant 62322106,62071131 and 62171135the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the NSF of Guangdong Province under Grant 2019A1515011465the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070the Industrial R&D Project of Haoyang Electronic Co.,Ltd.under Grant 2022440002001494.
文摘This paper proposes a high-throughput short reference differential chaos shift keying cooperative communication system with the aid of code index modulation,referred to as CIM-SR-DCSK-CC system.In the proposed CIM-SR-DCSK-CC system,the source transmits information bits to both the relay and destination in the first time slot,while the relay not only forwards the source information bits but also sends new information bits to the destination in the second time slot.To be specific,the relay employs an N-order Walsh code to carry additional log_(2)N information bits,which are superimposed onto the SRDCSK signal carrying the decoded source information bits.Subsequently,the superimposed signal carrying both the source and relay information bits is transmitted to the destination.Moreover,the theoretical bit error rate(BER)expressions of the proposed CIMSR-DCSK-CC system are derived over additive white Gaussian noise(AWGN)and multipath Rayleigh fading channels.Compared with the conventional DCSKCC system and SR-DCSK-CC system,the proposed CIM-SR-DCSK-CC system can significantly improve the throughput without deteriorating any BER performance.As a consequence,the proposed system is very promising for the applications of the 6G-enabled lowpower and high-rate communication.
文摘recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency.
基金supported in part by the National Key Research and Development Program of China(No.2021YFB2900600)in part by the National Natural Science Foundation of China under Grant 61971041 and Grant 62001027。
文摘Orthogonal Time Frequency Space(OTFS)signaling with index modulation(IM)is a promising transmission scheme characterized by high transmission efficiency for high mobility scenarios.In this paper,we study the receiver for coded OTFS-IM system.First,we construct the corresponding factor graph,on which the structured prior incorporating activation pattern constraint and channel coding is devised.Then we develop a iterative receiver via structured prior-based hybrid belief propagation(BP)and expectation propagation(EP)algorithm,named as StrBP-EP,for the coded OTFS-IM system.To reduce the computational complexity of discrete distribution introduced by structured prior,Gaussian approximation conducted by EP is adopted.To further reduce the complexity,we derive two variations of the proposed algorithm by using some approximations.Simulation results validate the superior performance of the proposed algorithm.
基金supported by the National Science Fund for Young Scholars(Grant No.62201539)the Project of Innovation and Entrepreneurship Training for National Undergraduates(Grant No.202210356005)the project of Zhejiang University Student Science and Technology Innovation Activity Plan(Grant No.2023R409055)。
文摘Reconfigurable intelligent surface(RIS)assisted dual-function radar communications(DFRC)system is a promising integrated sensing and communication(ISAC)technology for future 6G.In this paper,we propose a scheme of RIS-assisted DFRC system based on frequency shifted chirp spread spectrum index modulation(RDFI)for secure communications.The proposed RDFI achieves the sensing and transmission of target location information in its radar and communication modes,respectively.In both modes,the frequency-shifted chirp spread spectrum index modulation(FSCSS-IM)signal is used as the baseband signal for radar and communications,so that the signal sent by the radar also carries information.This scheme implements the RIS-assisted beamforming in the communication mode through the azimuth information of the target acquired in the radar mode,so that the signal received from the eavesdropper is distorted in amplitude and phase.In addition,this paper analyzes the radar measurement accuracy and communication security of the FSCSS-IM signal using ambiguity function and secrecy rate(SR)analysis,respectively.Simulation results show that RDFI achieves both excellent bit error rate(BER)performance and physical layer security of communications.
基金This work was supported by the National Natural Science Foundation of China(No.61379151,61401512,61572052,U1636219)the National Key Research and Development Program of China(No.2016YFB0801303,2016QY01W0105)the Key Technologies Research and Development Program of Henan Provinces(No.162102210032).
文摘In view of the fact that the current adaptive steganography algorithms are difficult to resist scaling attacks and that a method resisting scaling attack is only for the nearest neighbor interpolation method,this paper proposes an image steganography algorithm based on quantization index modulation resisting both scaling attacks and statistical detection.For the spatial image,this paper uses the watermarking algorithm based on quantization index modulation to extract the embedded domain.Then construct the embedding distortion function of the new embedded domain based on S-UNIWARD steganography,and use the minimum distortion coding to realize the embedding of the secret messages.Finally,according to the embedding modification amplitude of secret messages in the new embedded domain,the quantization index modulation algorithm is applied to realize the final embedding of secret messages in the original embedded domain.The experimental results show that the algorithm proposed is robust to the three common interpolation attacks including the nearest neighbor interpolation,the bilinear interpolation and the bicubic interpolation.And the average correct extraction rate of embedded messages increases from 50%to over 93% after 0.5 times-fold scaling attack using the bicubic interpolation method,compared with the classical steganography algorithm S-UNIWARD.Also the algorithm proposed has higher detection resistance than the original watermarking algorithm based on quantization index modulation.
基金supported by the National Natural Science Foundation of China under Grant U19B2014the Sichuan Science and Technology Program under Grant 2023NSFSC0457the Fundamental Research Funds for the Central Universities under Grant 2242022k60006.
文摘In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.
文摘The fiber Fabry-Perot interferometer used to measure the refractive index modulation of polymer-dispersed liquid crystal is introduced.From measuring the quantity of the interference fringe shift with a CCD based on the theory of isoclinal interference fringes formatting,the maximal refractive index modulation versus different external voltages,3.899×10-3 in the external voltage of 57.4 V/μm,and the dynamic refractive index modulation versus response time in the external voltage of 8 V/μm are found in our prepared 1.250 mm-thick PMMA/E49/TNF/ECZ polymer-dispersed liquid crystals.The experimental results will be helpful to understand the photoinduced reaction mechanism of the material and optimize the mixture ratio of each component.
文摘Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengths of laser and the order of interference, we introduce a new method to measure the modulation degree of refractive index in photorefractive materials through detecting the shift of the interference fringe in a fiber Fabry-Perot interferometer with a CCD. The measurement precision is also analyzed. With this method, the modulation degree of refractive index in our prepared SCLP/E7/C 60 photorefractive polymer is measured for different external voltages and the external voltage corresponding to the maximal modulation degree of refractive index is reported. The dynamic change of refractive index in the SCLP/E7/C 60 is also studied, which will be helpful to understand the reaction mechanism of photochemistry in the material.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807100in part by the National Natural Science Foundation of China under Grant 62001179in part by the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111.
文摘In this paper,efficient signal detectors are designed for Orthogonal Time Frequency Space(OTFS)modulation with Index Modulation(IM)systems.Firstly,the Minimum Mean Squared Error(MMSE)based linear equalizer and its corresponding soft-aided decision are studied for OTFS-IM.To further improve the performance,a Vectorby-Vector-aided Message Passing(VV-MP)detector and its associated soft-decision are proposed,where each IM symbol is considered an entire vector utilized for message calculation and passing.Simulation results are shown that the OTFS-IM system relying on the proposed detectors is capable of providing considerable Bit Error Rate(BER)performance gains over the OTFS and Orthogonal Frequency Division Multiplex(OFDM)with IM systems.
基金supported by National Nature Science Foundation of China(No.61701127,No.61871139,No.61631004,No.62071319)the International Collaborative Research Program of Guangdong Science and Technology Department(No.2020A0505100061).
文摘Generalised pre-coding quadrature spatial modulation(GPQSM)is recently proposed to increase the spectral efficiency(SE)of GPSM,which extends the transmitted symbols into in-phase/quadrature domains.In this paper,a novel scheme named non-orthogonal multiple access(NOMA)-aided GPQSM(NOMA-GPQSM),which incorporates the GPQSM scheme into the multi-user communication networks with assist of NOMA,is proposed to further improve the SE and system performance.In NOMA-GPQSM,one base station(BS)is set to serve K users,where user 1 is closest to the BS,and user K is farthest from the BS.In addition,a low-complexity detection method is proposed to reduce the high detection complexity of the maximum-likelihood(ML)detection in successive interference cancellation(SIC)method for all users by NOMA-GPQSM.The theoretical analysis of the BER performance for all users is also derived.Simulation results show that near users achieve relatively good performance,and far users achieve acceptable performance by adjusting power factors for all users in NOMA-GPQSM.
基金supported in part by the National Natural Science Foundation of China under Grant 62201228 and Grant 62001190in part by the Science and Technology Major Project of Tibetan Autonomous Region of China under Grant No.XZ202201ZD0006G02.
文摘Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the electromagnetic waves from the active transmission for additional information transfer(i.e.,passive transmission).In this paper,a hybrid RIS-based modulation,termed hybrid phase and code modulation(HPCM),is proposed to improve the reliability of RIS-assisted symbiotic radio.In RIS-HPCM,the RIS simultaneously performs direct sequence spread spectrum and passive beamforming on incident signals.Moreover,both the spreading code and phase offset are exploited to carry the RIS’s own information.A low-complexity detector is designed,in which the receiver first detects the spreading codes and then demodulates the constellation symbols.We analyze the bit error rate(BER)performance of RIS-HPCM over Rician fading channels.BER upper bounds and approximate BER expressions are derived in closed-form for maximum-likelihood and low-complexity detectors,respectively.Simulation results in terms of BER verify the analysis and show the superiority of RIS-HPCM over the existing RIS-based modulation.
基金financially supported by the National Natural Science Foundation of China(Nos.52122316,52073108 and 52233005)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003)。
文摘Holographic optical elements(HOEs)based on polymer composites have become a research hot spot in recent years for augmented reality(AR)due to the significant improvement of optical performance,dynamic range,ease of processing and high yield rate.Nevertheless,it remains a formidable challenge to obtain a large field of view(FOV)and brightness due to the limited refractive index modulation.Herein,we report an effective method to tackle the challenge by doping an epoxy liquid crystal termed E6M,which enables a large refractive index modulation of 0.050@633 nm and low haze of 5.0%at a doping concentration of 5 wt%.This achievement may be ascribed to the improved molecular ordering of liquid crystals within the holographic polymer composites.The high refractive index modulation can endow transmission-type holographic polymer composites with a high diffraction efficiency of 96.2%at a small thickness of 5μm,which would promise the design of thin and lightweight AR devices.
基金Supported by the National Natural Science Foundation of China (No. 61032003 and No. 61021001)
文摘Compared with common near space satellite Telemetry,Telecommand,and Communication(TT&C),deep space TT&C presents a more challenging environment such as long distance,very low Signal to Noise Ratio(SNR).How to acquire main carrier exactly becomes a hot focus for deep space communications.Already there emerged some main carrier acquisition algorithms,but they all require high SNR and small modulation index.In this paper,we develop a new acquire algorithm.First we use the spectral energy center algorithm to shorten the original sequence,filter out some noise and make the spectral more symmetric.Then we adopt the spectral symmetry algorithm to make full use of the whole spectrum information,and utilize FFT to reduce computation complexity.Simulation results show that our algorithm can acquire main carrier successfully under large modulation index and get good performance with low Carrier to Noise Ratio(CNR).
文摘Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.
文摘In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and <i>M</i>-ary amplitude-phase-shift keying (MAPSK). Description of such signals and the formulas for calculating the minimum squared Euclidean distance are presented. We have developed an analytic building method for even and odd values of <i>M</i>. Hence, no computer search and no heuristic methods are required. The new optimized BFSK-MAPSK (<i>M </i>= 5,6,···,16) signal constructions are built for the values of modulation indexes <i>h</i> =0.1,0.15,···,0.5 and their parameters are given. The results of computer simulations are also provided. Based on the obtained results we can conclude, that BFSK-MAPSK systems outperform similar four-dimensional systems both in terms of minimum squared Euclidean distance and simulated symbol error rate.
基金Project supported by the National Natural Science Foundation of China (No. 60970148)the National High-Tech R&D (863)Program of China (No. 2011AA010704)
文摘This paper presents a method to detect the quantization index modulation(QIM) steganography in G.723.1 bit stream.We show that the distribution of each quantization index(codeword) in the quantization index sequence has unbalanced and correlated characteristics.We present the designs of statistical models to extract the quantitative feature vectors of these characteristics.Combining the extracted vectors with the support vector machine,we build the classifier for detecting the QIM steganography in G.723.1 bit stream.The experiment shows that the method has far better performance than the existing blind detection method which extracts the feature vector in an uncompressed domain.The recall and precision of our method are all more than 90% even for a compressed bit stream duration as low as 3.6 s.
基金National Natural Science Foundation of China(No.61272432)Qingdao Science and Technology Development Plan(No.12-1-4-6-(10)-jch)
文摘Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.