明晰物种的潜在分布区及其与当前自然保护区的空缺,对于合理高效地开展濒危物种保护具有重要的意义。为了预测四合木(Tetraena mongolica)在当代(2020s)及未来(2060s、2100s)的分布范围,以及自然保护区对四合木的保护现状,以四合木为对...明晰物种的潜在分布区及其与当前自然保护区的空缺,对于合理高效地开展濒危物种保护具有重要的意义。为了预测四合木(Tetraena mongolica)在当代(2020s)及未来(2060s、2100s)的分布范围,以及自然保护区对四合木的保护现状,以四合木为对象,利用最大熵模型(The maximum entropy model software,MaxEnt)结合23个环境变量预测其在内蒙古自治区西鄂尔多斯与宁夏回族自治区的潜在适生区,并与当前四合木自然保护区进行了保护空缺分析。结果表明:(1)MaxEnt模型的受试者工作特征曲线下的面积为0.977,表明预测结果准确。(2)影响四合木分布的主要环境因子是最湿月降水量,其次是最干月降水量、距道路距离、等温性、最冷季平均温度、坡度。(3)研究区内四合木当前适生面积为4717 km2;2020s—2100s四合木潜在分布区退缩,并向西北部偏移。(4)基于保护空缺分析,当前仅有14.88%四合木的适宜生境位于保护区内,大面积的四合木适生区未设立自然保护区,这些地区主要集中在内蒙古乌海市和鄂尔多斯市杭锦旗。研究结果旨在为四合木保护及其自然保护区建设提供科学指导。展开更多
为进一步探明陕西省榆林市樟子松人工林的土壤养分变化特征,以5年生樟子松(Pinus sylvestris L. var. mongolica Litv.)纯林和5年生樟子松-胡枝子(Lespedeza bicolor Turcz.)混交林为研究对象,分析土壤有机质、硝态氮、有效磷、速效钾...为进一步探明陕西省榆林市樟子松人工林的土壤养分变化特征,以5年生樟子松(Pinus sylvestris L. var. mongolica Litv.)纯林和5年生樟子松-胡枝子(Lespedeza bicolor Turcz.)混交林为研究对象,分析土壤有机质、硝态氮、有效磷、速效钾等理化指标以及土壤酶活性的变化特征。结果表明,樟子松纯林和樟子松-胡枝子混交林土壤有机质、有效磷和速效钾含量整体上均随着土层深度的增加呈下降趋势,全磷含量均随着土层深度的增加呈先升高后降低的趋势,硝态氮含量则均随着土壤深度的增加而增加,5个指标均表现为樟子松-胡枝子混交林高于樟子松纯林,且樟子松-胡枝子混交林各层土壤有效磷含量均显著高于樟子松纯林(P<0.05);樟子松纯林和樟子松-胡枝子混交林土壤含水率各土层间差异均不显著,樟子松-胡枝子混交林5~15 cm土层土壤含水率含量显著高于樟子松纯林(P<0.05);樟子松纯林和樟子松-胡枝子混交林土壤碱性磷酸酶活性、过氧化氢酶活性、脲酶活性均随着土层深度的增加而降低,且樟子松-胡枝子混交林过氧化氢酶活性和脲酶活性在各土层均显著高于樟子松纯林(P<0.05)。展开更多
Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of Chi...Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.展开更多
Picea mongolica is an endemic and endangered species in China. Ecosystem made of Picea mongolica is a special sandy forest ecosystem in China. It is found at ecotone between forest and steppe, or agricultural district...Picea mongolica is an endemic and endangered species in China. Ecosystem made of Picea mongolica is a special sandy forest ecosystem in China. It is found at ecotone between forest and steppe, or agricultural district and pastoral area. Based on investigation, this paper discussed the formation and distribution of Picea mongolica and studied its nature according to ecotone theory. It is clarified that Picea mongolica belongs to Picea meyeri series. That is to say, it became a local race through long-term adaptation to the local climate, then formed allopatric semi-species, and finally turned into a taxonomical species. Picea mongolica forest is a super zonal climax community developing in ecotone between forest zone and steppe zone.展开更多
文摘明晰物种的潜在分布区及其与当前自然保护区的空缺,对于合理高效地开展濒危物种保护具有重要的意义。为了预测四合木(Tetraena mongolica)在当代(2020s)及未来(2060s、2100s)的分布范围,以及自然保护区对四合木的保护现状,以四合木为对象,利用最大熵模型(The maximum entropy model software,MaxEnt)结合23个环境变量预测其在内蒙古自治区西鄂尔多斯与宁夏回族自治区的潜在适生区,并与当前四合木自然保护区进行了保护空缺分析。结果表明:(1)MaxEnt模型的受试者工作特征曲线下的面积为0.977,表明预测结果准确。(2)影响四合木分布的主要环境因子是最湿月降水量,其次是最干月降水量、距道路距离、等温性、最冷季平均温度、坡度。(3)研究区内四合木当前适生面积为4717 km2;2020s—2100s四合木潜在分布区退缩,并向西北部偏移。(4)基于保护空缺分析,当前仅有14.88%四合木的适宜生境位于保护区内,大面积的四合木适生区未设立自然保护区,这些地区主要集中在内蒙古乌海市和鄂尔多斯市杭锦旗。研究结果旨在为四合木保护及其自然保护区建设提供科学指导。
文摘为进一步探明陕西省榆林市樟子松人工林的土壤养分变化特征,以5年生樟子松(Pinus sylvestris L. var. mongolica Litv.)纯林和5年生樟子松-胡枝子(Lespedeza bicolor Turcz.)混交林为研究对象,分析土壤有机质、硝态氮、有效磷、速效钾等理化指标以及土壤酶活性的变化特征。结果表明,樟子松纯林和樟子松-胡枝子混交林土壤有机质、有效磷和速效钾含量整体上均随着土层深度的增加呈下降趋势,全磷含量均随着土层深度的增加呈先升高后降低的趋势,硝态氮含量则均随着土壤深度的增加而增加,5个指标均表现为樟子松-胡枝子混交林高于樟子松纯林,且樟子松-胡枝子混交林各层土壤有效磷含量均显著高于樟子松纯林(P<0.05);樟子松纯林和樟子松-胡枝子混交林土壤含水率各土层间差异均不显著,樟子松-胡枝子混交林5~15 cm土层土壤含水率含量显著高于樟子松纯林(P<0.05);樟子松纯林和樟子松-胡枝子混交林土壤碱性磷酸酶活性、过氧化氢酶活性、脲酶活性均随着土层深度的增加而降低,且樟子松-胡枝子混交林过氧化氢酶活性和脲酶活性在各土层均显著高于樟子松纯林(P<0.05)。
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418) and by Nature Science Foundation of Liaoning Province (20021006).
文摘Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.
基金National Natural Science Foundation of China (39670133 39900019 30070129).
文摘Picea mongolica is an endemic and endangered species in China. Ecosystem made of Picea mongolica is a special sandy forest ecosystem in China. It is found at ecotone between forest and steppe, or agricultural district and pastoral area. Based on investigation, this paper discussed the formation and distribution of Picea mongolica and studied its nature according to ecotone theory. It is clarified that Picea mongolica belongs to Picea meyeri series. That is to say, it became a local race through long-term adaptation to the local climate, then formed allopatric semi-species, and finally turned into a taxonomical species. Picea mongolica forest is a super zonal climax community developing in ecotone between forest zone and steppe zone.