期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing 被引量:14
1
作者 Liu Weidong Zhu Hua +3 位作者 Zhou Shengqiang Bai Yalei Wang Yuan Zhao Chunsheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期935-942,共8页
A novel 0-Poisson's ratio cosine honeycomb support structure of flexible skin is proposed. Mechanical model of the structure is analyzed with the energy method, finite element method (FEM) and experiments have been... A novel 0-Poisson's ratio cosine honeycomb support structure of flexible skin is proposed. Mechanical model of the structure is analyzed with the energy method, finite element method (FEM) and experiments have been performed to validate the theoretical model. The in-plane characteristics of the cosine honeycomb are compared with accordion honeycomb through analytical models and experiments. Finally, the application of the cosine honeycomb on a variable camber wing is studied. Studies show that mechanical model agrees well with results of FEM and experiments. The transverse non-dimensional elastic modulus of the cosine honeycomb increases (decreases) when the wavelength or the wall width increases (decreases), or when the amplitude decreases (increases). Compared with accordion honeycomb, the transverse non-dimensional elastic modulus of the cosine honeycomb is smaller, which means the driving force is smaller and the power consumption is less during deformation. In addition, the cosine honeycomb can satisfy the deform- ing requirements of the variable camber wing. 展开更多
关键词 Cosine honeycomb Flexible skin Mechanical properties morphing wing Smart structure
原文传递
An efficient stiffness analysis model based on shear deformation theory for flexible skin shear variable-sweep wing
2
作者 Yue BAI Guang YANG +3 位作者 Hong XIAO Hongwei GUO Rongqiang LIU Bei LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期445-458,共14页
Fixed-wing aircraft cannot maintain optimal aerodynamic performance at different flight speeds. As a type of morphing aircraft, the shear variable-sweep wing(SVSW) can dramatically improve its aerodynamic performance ... Fixed-wing aircraft cannot maintain optimal aerodynamic performance at different flight speeds. As a type of morphing aircraft, the shear variable-sweep wing(SVSW) can dramatically improve its aerodynamic performance by altering its shape to adapt to various flight conditions.In order to achieve smooth continuous shear deformation, SVSW's skin adopts a flexible composite skin design instead of traditional aluminum alloy materials. However, this also brings about the non-linear difficulty in stiffness modeling and calculation. In this research, a new SVSW design and efficient stiffness modeling method are proposed. Based on shear deformation theory, the flexible composite skin is equivalently modeled as diagonally arranged nonlinear springs, simulating the elastic force interaction between the skin and the mechanism. By shear loading tests of flexible composite skin, the accuracy of this flexible composite skin modeling method is verified. The SVSW stiffness model was established, and its accuracy was verified through static loading tests. The effects of root connection, sweep angles, and flexible composite skin on the SVSW stiffness are analyzed. Finally, considering three typical flight conditions of SVSW: low-speed flow(Ma = 0.3,Re = 5.82 × 10^(6)), transonic flow(Ma = 0.9, Re = 3.44 × 10^(6)), and supersonic flow(Ma = 3,Re = 7.51 × 10^(6)), the stiffness characteristics of SVSW under flight conditions were evaluated.The calculated results guide the application of SVSW. 展开更多
关键词 Shear variable-sweep wing(SVSW) Flexible composite skin morphing mechanism Stiffness analysis Loading tests Structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部