期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Analyzing Motion Patterns in Crowded Scenes via Automatic Tracklets Clustering 被引量:1
1
作者 王冲 赵旭 +1 位作者 邹毅 刘允才 《China Communications》 SCIE CSCD 2013年第4期144-154,共11页
Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose... Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose a novel approach for the analysis of motion patterns by clustering the tracklets using an unsupervised hierarchical clustering algorithm, where the similarity between tracklets is measured by the Longest Common Subsequences. The tracklets are obtained by tracking dense points under three effective rules, therefore enabling it to capture the motion patterns in crowded scenes. The analysis of motion patterns is implemented in a completely unsupervised way, and the tracklets are clustered automatically through hierarchical clustering algorithm based on a graphic model. To validate the performance of our approach, we conducted experimental evaluations on two datasets. The results reveal the precise distributions of motion patterns in current crowded videos and demonstrate the effectiveness of our approach. 展开更多
关键词 crowded scene analysis motionpattern tracklet automatic clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部