High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ...High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.展开更多
In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model wlth the on-site Cou...In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model wlth the on-site Coulomb repulsion U as well as the inter-site Coulomb repulsion V and antiferromagnetic exchange J. After clarifying the generic phase diagrams in three limiting cases with one of the parameters being fixed at zero individually, we find that the BOW phase in the U-V phase diagram is initially enlarged as J increases from zero but is eventually suppressed as J increases further in the strong-coupling regime. A three-dimensional phase diagram is suggested where the BOW phase exists in an extended region separated from the spin-density-wave and charge-density-wave phases.展开更多
The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The re...The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The results show that the passivation film formed on 316L stainless steel is stable in 60% acetic acid solution from 25 ℃ to 85 ℃. As temperature increased, the polarization resistance decreased but the interface capacitance increased. There was hardly any relation between temperature and the intrinsic property semiconductor. The passivation film represents the p-semiconductor property in the potential interval of -0.5-0.1 V; represents the n-semiconductor property in the potential interval of 0.1-0.9 V; and represents the p-semiconductor property in the potential interval of 0.9-1.1 V. The voltammetry measurements show that the structure of the passivation film is stable when the temperature is lower than 55 ℃ and that its stability decreased when this temperature is exceeded.展开更多
基金The project supported by the National Key Research and Development Program of China(Grant No.2018YFA0305703)Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.U1930401 and 11874075)。
文摘High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.
基金The project supported in part by National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province of China. We acknowledge useful discussions with X. Feng, T. Xiang, and Y. Yu.
文摘In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model wlth the on-site Coulomb repulsion U as well as the inter-site Coulomb repulsion V and antiferromagnetic exchange J. After clarifying the generic phase diagrams in three limiting cases with one of the parameters being fixed at zero individually, we find that the BOW phase in the U-V phase diagram is initially enlarged as J increases from zero but is eventually suppressed as J increases further in the strong-coupling regime. A three-dimensional phase diagram is suggested where the BOW phase exists in an extended region separated from the spin-density-wave and charge-density-wave phases.
基金the National R&D Infrastructure and Facility Development Program of China(No.2005DKA10400)
文摘The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The results show that the passivation film formed on 316L stainless steel is stable in 60% acetic acid solution from 25 ℃ to 85 ℃. As temperature increased, the polarization resistance decreased but the interface capacitance increased. There was hardly any relation between temperature and the intrinsic property semiconductor. The passivation film represents the p-semiconductor property in the potential interval of -0.5-0.1 V; represents the n-semiconductor property in the potential interval of 0.1-0.9 V; and represents the p-semiconductor property in the potential interval of 0.9-1.1 V. The voltammetry measurements show that the structure of the passivation film is stable when the temperature is lower than 55 ℃ and that its stability decreased when this temperature is exceeded.